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SUMMARY

In the adult brain, structural and functional parameters, such as synaptic sizes and neuronal firing rates,
follow right-skewed and heavy-tailed distributions. While this organization is thought to have significant im-
plications, its development is still largely unknown. Here, we address this knowledge gap by investigating a
large-scale dataset recorded from the prefrontal cortex and the olfactory bulb of mice aged 4–60 postnatal
days. We show that firing rates and spike train interactions have a largely stable distribution shape
throughout the first 60 postnatal days and that the prefrontal cortex displays a functional small-world archi-
tecture. Moreover, early brain activity exhibits an oligarchical organization, where high-firing neurons have
hub-like properties. In a neural networkmodel, we show that analogously right-skewed and heavy-tailed syn-
aptic parameters are instrumental to consistently recapitulate the experimental data. Thus, functional and
structural parameters in the developing brain are already extremely distributed, suggesting that this organi-
zation is preconfigured and not experience dependent.

INTRODUCTION

In the adult brain, many structural and functional parameters

follow right-skewed distributions with heavy right tails, such as

the log-normal,1,2 gamma,3 or power law4,5 distribution. A non-

exhaustive list of parameters that is characterized by such distri-

butions includes size and number of synapses6–9; size of post-

synaptic currents10–12; diameter of axons13; density of neurons14;

in vivo single-unit-activity (SUA) firing rates15–17; spike transmis-

sion probability10,17; pairwise correlations among spike trains18;

and power of the local field potential (LFP),19,20 electroencephalo-

gram (EEG),21–23 magnetoencephalogram (MEG),22–24 and blood-

oxygen-level-dependent (BOLD)25 signals.

If a parameter follows such a distribution, it is implied that a

large proportion of the data display small values that fall well

below the mean. Conversely, extremely large values are more

commonly observed than if they followed a narrower distribu-

tion such as the normal (or Gaussian), as is often implicitly

assumed.1,2 Thus, these distributions are characterized by

high levels of inequality. We define such distributions as being

‘‘extreme.’’26 It has been suggested that the extreme distribu-

tion of neural parameters might have several useful proper-

ties.1,2,10,27 For instance, the log-normal distribution of synaptic

sizes might promote the formation and propagation of neuronal

sequences,10,28 while at the same time optimizing storage ca-

pacity.27 Moreover, the extreme distribution of firing rates might

result in an environment with an optimal balance between a

large amount of ‘‘specialist’’ neurons complemented by few

‘‘generalists.’’ The first ones would only fire upon receiving a

highly specific constellation of pre-synaptic inputs, and thereby

have a spiking activity with unique and distinctive ‘‘interpreta-

tion’’ for post-synaptic partners. Conversely, generalist neu-

rons would require less specific pre-synaptic inputs to generate

a spike. This could allow such neurons to generalize over similar

sensory stimuli and might therefore represent the brain’s ‘‘best

guess.’’1,2 Overall, this organization is thought of producing a

system that allows for concomitant specialization and flexibility,

while limiting the number of energy-demanding high-firing-rate

neurons.10

While it is widely accepted that the adult brain is an extreme

environment, how this unfolds throughout development is still

unclear. Two main competing hypotheses have been put for-

ward. The ‘‘blank-slate model’’ posits that the developing

brain is a tabula rasa, a blank slate that lacks a refined struc-

ture.29 A corollary of this view is that structural and functional

parameters in the developing brain should follow a narrow,

thin-tailed distribution. Only upon developmental learning

would the brain structure gradually become skewed, heavy

tailed, and unequal, as reported for the adult brain. While

this view is not often openly advocated for, it is often

implied.2,30,31 The competing theory is the ‘‘preconfigured

brain hypothesis,’’ which proposes that the developing brain

is pre-packaged with non-random structure and already dis-

plays extreme distributions of structural and functional param-

eters. Consequently, this hypothesis implies that develop-

mental learning should not fundamentally transform the

brain architecture. Rather, learning is viewed as a matching

process that associates pre-existing structure, which is
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initially devoid of meaning, with a behavioral output or a sen-

sory sensation.2,32–35

To tease apart these two hypotheses, we investigated the

in vivo development of brain activity in a large-scale dataset

from unanesthetized postnatal day (P) 4–60 mice (n = 302

mice). The youngest mice in the dataset belong to a very

immature developmental phase in which, even though neurons

in the sensory systems are active, they mostly do not repre-

sent sensory information. An exception to this developmental

dynamic is the olfactory system. From birth onward, rodents

rely on olfaction for survival, as they actively employ olfactory

cues to locate the dam’s nipple.36,37 Thus, in the present

study, to control for the potential effect of developmental

learning, we investigated the early developing olfactory bulb

(OB) and the prefrontal cortex (PFC), the cortical region with

Figure 1. SUA firing statistics in the mouse

PFC and OB across the first two postnatal

weeks

(A) Schematic representation46 of extracellular re-

cordings in the PFC and OB of P4–12 mice.

(B) Digital reconstruction of the position of a DiI-

labeled recording electrode in the PFC (left) and

OB (right) with the antero-posterior distance from

bregma (top) of a Nissl-stained coronal section

(green) of a P9 and P10 mouse, respectively. Scale

bar: 1 mm (left) and 400 mm (right).

(C) Representative raster plot of 1 min of SUA ac-

tivity recorded in the PFC of a P6 (left), P9 (middle),

and P12 (right) mouse.

(D) Line plot displaying the SUA firing rate of P4–12

mice (n = 278 mice and 14,357 single units). Color

codes for brain region.

(E) Same as (D) for STTC (n= 278mice and 654,335

spike train pairs).

(F) Probability density distribution for SUA firing

rate in P4–12 mice. Color codes for brain region.

(G) Same as (F) for STTC. In (D) and (E) data are

presented as mean and 95% confidence interval

(CI). Asterisks in (D) and (E) indicate significant ef-

fect of age. **p < 0.01, generalized linear mixed-

effect models.

the most protracted development.38

We show that, in both brain regions,

the skewness, tailedness, and inequality

of the distributions of in vivo SUA firing

rates and pairwise interactions among

spike trains do not increase throughout

development. Along the same lines,

already midway through the first post-

natal week, the PFC displays a non-

random small-world topography. More-

over, in both brain regions, neurons in

the right tail of the firing-rate distribution

are overwhelmingly more likely to also

be in the right tail of the pairwise interac-

tion distribution and to exhibit hub-like

properties. We refer to this organization

as oligarchical, and we show that it

gradually wanes throughout adulthood, concomitantly with a

maturation of excitation-inhibition balance.

RESULTS

SUA firing rate exponentially increases over age, while
spiking activity decorrelates
To assess the in vivo developmental firing dynamics, we

analyzed a large-scale dataset of SUA (n = 278 mice, 14,357

units and 654,335 spike train pairs) recorded with Neuropixels

as well as single- and multi-shank Neuronexus silicon probes

from the PFC and the ventral OB of non-anesthetized P4-P12

mice (n = 278 mice) (Figures 1A–1C and S1A–S1C). Some of

the data have been used in previously published studies.39,40

We calculated the firing rate (first-order SUA statistics) and the
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spike-time tiling coefficient (STTC; second-order SUA statistics,

calculated at a 10-ms timescale), a measure of pairwise correla-

tion among spike trains that is not biased by firing rate.41 In line

with previous reports,39,40,42–45 using multivariate linear regres-

sion, we found that firing rate exponentially increased with age

in both brain regions (age effect = 0.11, confidence interval [CI]

[0.04; 0.18], p = 0.004, generalized linear mixed-effect model)

(Figure 1D) and that the OB displayed a higher firing rate than

the PFC (firing rate at P8 = 0.57 and 0.25 Hz, CI [0.50; 0.65]

and [0.22; 0.29] for OB and PFC, respectively, p < 10�16)

(Figures 1D and S1D).

Concomitant with the increase of firing rate, and consistent

with previously published data,39,47,48 the STTC exponentially

decreased with age (age effect = �0.008, CI [�0.014; �0.003],

p= 0.003, linearmixed-effect model), indicating a developmental

decorrelation of spiking activity (Figure 1E). When evaluating this

effect on individual brain regions, we found that theOBdisplayed

lower STTC values than the PFC (STTC value at P8 = 0.092 and

0.105, CI [0.091; 0.093] and [0.104; 0.106] for OB and PFC,

respectively, p < 10�16) (Figures 1E and S1E).

Lastly, when pooled across mice and brain regions, both

firing rate and STTC already displayed a right-skewed and

heavy-tailed distribution at these early developmental stages

(Figures 1F and 1G).

These data indicate that, in both brain regions, SUA firing rates

exponentially increase across the first two postnatal weeks

while, at the same time, spiking activity decorrelates. Consistent

with the early maturation of the OB and its high density of INs,37

the OBs display higher firing rates and lower STTC values than

the PFCs. Even at neonatal age, the two variables exhibit a

right-skewed and heavy-tailed distribution in both brain areas.

The skewness, tailedness, and inequality of the SUA
firing statistics do not increase over age
A corollary of the blank-slate model is that the distributions of

functional parameters should becomemore extreme over devel-

opment. To quantify the distribution shape for the first- and sec-

ond-order SUA statistics, we computed their skewness, kurto-

sis, and Gini coefficient (Figures 2A–2C). Skewness and

kurtosis are the third and fourth central moments of a variable,

and they measure its asymmetry and tailedness, respectively.

Negative values of skewness indicate a left-skewed distribution,

positive values a right-skewed distribution, and null values a

symmetrical distribution (Figure 2A). Kurtosis only takes positive

values. Normal distributions have a kurtosis value of 3 and are

referred to as mesokurtic distributions. Distributions with a kur-

tosis below 3 are platykurtic (thin tailed), whereas distribution

with a kurtosis above 3 are leptokurtic (heavy tailed) (Figure 2B).

The Gini coefficient measures the inequality of a distribution49,50

and takes values ranging between 0 (representing total equality)

and 1 (representing total inequality). It is calculated as the area

between the line of equality and the Lorenz curve divided by

the total area under the line of equality (Figure 2C). To increase

the estimation accuracy of these three parameters, for this anal-

ysis we only considered mice with at least 20 simultaneously re-

corded single units (n = 195 out of 278 mice).

When combining data from the PFC and OB, contrary to the

prediction of the blank-slate model, neither the skewness nor

the kurtosis of firing rates (age coefficient = �0.06 and �0.02,

CI [�0.19; 0.07] and [�0.05; 0.02], p = 0.39 and p = 0.45, for

skewness and kurtosis, respectively, linear model) and STTC

(age coefficient = 0.06 and 0.01, CI [�0.27; 0.39] and [�0.05;

0.07], p = 0.73 and p = 0.71, for skewness and kurtosis,

respectively, linear model) exhibited an age-dependent trend

(Figures 2D and 2E). Pooling together firing rate and STTC distri-

butions, 100% of the distributions were right skewed (390 out of

390, skewness >0), and 94% were leptokurtic or heavy tailed

(366 out of 390, kurtosis >3). Along the same lines, the Gini coef-

ficient of firing rate did not significantly change over the first two

postnatal weeks (age coefficient = �0.004, CI [�0.014; 0.007],

p = 0.50, linear model), whereas the Gini coefficient of STTC

even slightly decreased over age (age coefficient = �0.02, CI

[�0.03;�0.002], p = 0.02, linear model) (Figure 2F). This dynamic

was consistent across brain regions (Figures S2A–S2C) and

robust to changes in the minimum number of single units used

as cutoff for analysis (Figure S2D). Even analyzing the distribu-

tions of firing rate and STTC after pooling together units recorded

in the same brain region and in mice of the same age did not

lead to age dependency for any of the evaluated parameters

(Figure S3).

These data indicate that, irrespective of brain region, the

skewness, tailedness, and inequality of first- and second-order

SUA statistics do not increase with age, as would be predicted

by the blank-slate model. On the contrary, the only parameter

to exhibit a significant age dependence is the Gini coefficient

of STTC, which decreases with age. However, this effect is of

modest size, and it is the only result that depends on the number

of units used as cutoff for a mouse to be included in the analysis

(Figure S3D). Further, almost the totality of these distributions is

right skewed and heavy tailed. The fact that these results are

largely brain region independent indicates that the different

developmental speed of the early-maturating OB and the late-

maturing PFC does not affect these dynamics. Considering the

large size of the investigated datasets, it is also unlikely that

we were unable to detect the presence of developmental trends

due to a lack of statistical power.

Lastly, solely skewness and kurtosis of both firing rate and

STTC robustly correlated with each other (r2 = 0.9 and 0.88,

respectively). Despite similar developmental trajectories, the

other pairwise parameter combinations were poorly predictive

of each other (median r2 = 0.03) (Figure S4), indicating that

they quantify distinct distributions that are largely independent

of each other and, thus, not redundant.

Complex functional network properties of the PFC do
not vary over development
Even if the skewness, tailedness, and inequality of firing rate and

STTC are largely constant over age, we hypothesized that devel-

opmental changes might be detectable at a network level. To

test this hypothesis, we resorted to complex network analysis51

and investigated the functional network topology of the devel-

oping PFC in vivo (Figure 3A), similarly to what was previously

done in vitro.52 To minimize a potential estimation bias due to

low number of single units, an inherent drawback of recordings

in neonatal mice, we limited this analysis to mice having at least

20 single units (n = 108 out of 131 PFC recordings). We restricted
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Figure 2. Skewness, kurtosis, and Gini coeffi-

cient of firing rate and STTC over the first two

postnatal weeks

(A) Schematic representation of three distributions

with different skewness values.

(B) Same as (A) for kurtosis.

(C) Lorenz curves for three distributions with different

Gini coefficient values and schematic representation

of how the Gini coefficient is calculated.

(D) Violin plot displaying the skewness of firing rate

(left) and STTC (right) of P4–12 mice (n = 195 mice).

Color codes for age with 1-day increments.

(E and F) Same as (D) for kurtosis (E) and Gini coef-

ficient (F). White dots indicate individual mice, and

the shaded area represents the probability density of

the variable. Asterisk in (F) indicates a significant ef-

fect of age. *p < 0.05, linear model. p values in (D)–(F)

refer to the effect of age, linear models.
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the investigation to the PFC because the network analysis for OB

was biased by the low number of units and the level of recurrent

connectivity.

The functional network analysis was carried out on symmetric

STTC matrices computed on individual mice, where each node

corresponds to a single unit (Figure 3B). These matrices were

thresholded and binarized by a shuffling procedure that swap-

ped the identity of the neurons while preserving the population

firing rate (see STAR Methods for details). To evaluate the topol-

ogy of the graphs, we computed their density and three main

network properties: characteristic path length (L), clustering co-

efficient (C), and small-worldness (S) (Figure 3A). These last three

parameters were normalized by dividing them with a corre-

sponding null value extracted from random networks with the

same density (the dashed red line in Figures 3C–3E indicates

the value of the corresponding random network).

Similar to the parameters based on SUA statistics, the density

of the graphs did not significantly vary over age (age coefficient =

�0.003, CI [�0.009; 0.002], p = 0.23, linear model) (Figure S5A).

While L values were similar to those computed on random net-

works (58 out of 108 = 54% networks with normalized L > 1) (Fig-

ure 3C), all but one network had larger C values than the corre-

Figure 3. Complex network analysis in the

PFC across the first two postnatal weeks

(A) Schematic representation of a lattice, small

world, and random network and their respective

values of characteristic path length (L), clustering

coefficient (C), and small-worldness (S).

(B) Weighted adjacency STTC matrix of a repre-

sentative P10 mouse. Color codes for STTC value.

Units are sorted by recording depth.

(C) Violin plot displaying the characteristic path

length as a function of age (n = 108 mice). The

dashed red line indicates the value of the corre-

sponding randomnetwork. Color codes for agewith

1-day increments.

(D and E) Same as (C) for clustering coefficient

(D) and small-worldness (E). In (C)–(E), white dots

indicate individual mice and shaded area repre-

sents the probability density of the variable. Aster-

isks in (C) and (D) indicate a significant effect of age.

***p < 0.001, linear models. p value in (E) refers to

the effect of age, linear model.

sponding random network (107 out of

108 = 99% networks with normalized

C > 1) (Figure 3D). The graphs’ transitivity,

a parameter that is closely related to the

clustering coefficient, was analogously

higher than in random networks (107 out

of 108 = 99% networks with normalized

transitivity >1) (Figure S5B).

Low L and high C values are typical of

so-called small-world networks, a cate-

gory that includes many real-world net-

works, including the adult brain53–55 (but

see Hilgetag and Goulas56). Accordingly,

the small-worldness of the developing

PFC was robustly higher than its corre-

sponding null value (107 out of 108 = 108 = 99% networks with

normalized S > 1) (Figure 3E). The normalized L and C increased

over age (age coefficient = 0.13 and 0.02, CI [0.06; 0.21] and

[0.01; 0.03], p < 10�4 and p < 10�4, for normalized L and C,

respectively, linear model) (Figures 3C and 3D). While this effect

could be explained by an increase on the graph’s size (the num-

ber of units per mouse),57 more central for the aim of the project

is the fact the normalized S did not vary with age (age coeffi-

cient = 0.07, CI [�0.02; 0.16], p = 0.15, linear model) (Figure 3E).

Further, all these results were robust to changes in the minimum

number of single units used as cutoff for analysis (Figure S5C).

Thus, complex network analysis revealed that, already during

the first two postnatal weeks, the PFC displays a non-random

and small-world functional network architecture that is similar

to that described in the adult brain53–55 and is stable over age.

The developing brain is in an oligarchical state
Next, we investigated whether the SUA statistics are not only

extremely distributed but also correlated to each other. For

this, we used multivariate linear regression with age as a co-

variate, and we evaluated the relationship between the log-

transformed firing rate of a neuron and its log-transformed
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average STTC. We found that, irrespective of brain region, the

two variables robustly correlated with each other (firing rate

coefficient = 0.08, CI [0.07; 0.08], p < 10�70, linear mixed-ef-

fect model) (Figures 4A, 4B, and S5D). This correlation be-

tween firing rate and average STTC was lower in the OB

than in the PFC (firing rate and brain area interaction coeffi-

cient = 0.06, CI [0.05; 0.06], p < 10�84, linear mixed-effect

model) (Figure 4B). Since the STTC lacks a firing rate bias,41

this is indicative of a genuine correlation between the two vari-

ables. Consequently, neurons with high firing rates dispropor-

tionately contribute to network dynamics during development,

a property reminiscent of hub neurons, as recently shown in

the developing barrel cortex.58 We define this state, in which

extreme distributions are tightly correlated with each other,

as being ‘‘oligarchical.’’

To investigate whether the firing rate of a neuron also corre-

lates to its network-level features, we used the prefrontal STTC

matrices described in the paragraph above and extracted four

different regional and global ‘‘hubness’’ metrics for each individ-

ual node: degree (i.e., total number of connections), strength

(i.e., sum of connection weights), betweenness centrality (the

fraction of shortest paths containing a given node), and close-

ness centrality (the reciprocal of the average shortest path for

a given node) (Figures 4C and 4D). For each of these measures,

we then assigned a score of 0 or 1 to each node, depending on

whether it exceeded the 75th percentile of that specific metric.52

Summing the individual scores, we obtained a composite hub-

ness score, with values ranging from 0 to 4. The majority of neu-

rons (6,580 out of 10,512 = 63%) had a hubness score of 0,

whereas a smaller proportion (1,471 out of 10,512 = 14%) of neu-

rons received a hubness score of 4. As previously reported in 2D

neuronal cultures,52 the hubness score robustly correlated with

firing rate (hubness score effect, p < 10�70, linear mixed-effect

model), with the median firing rate differing by almost an order

of magnitude between neurons with hubness score 0 and 4

(Figure 5E).

These data indicate that the developing cortex is not only an

environment characterized by stably extreme SUA statistics dis-

tributions but also that it exhibits a peculiar oligarchical state, in

which the firing rate of a neuron robustly correlates with the

strength of its pairwise interactions and its network-level

properties.

Figure 4. Firing rate correlates with average STTC and hubness score
(A) Scatterplot displaying the log-transformed average STTC of prefrontal neurons as a function of their log-transformed firing rate in all recorded P6 (left), P8

(center), and P10 (right) mice. Color codes for age.

(B) Line plot displaying the log-transformed average STTC as a function of log-transformed firing rate across brain regions (n = 259 mice and 14,043 single units).

Color codes for brain region.

(C) Schematic representation of a network’s graph in which regional (red) and global (green) hubs are highlighted.

(D) Weighted adjacency STTC matrix recorded from the PFC of a P10 mouse. The gray arrow indicates a neuron with high hubness score. Color codes for STTC

value.

(E) Violin plot displaying the log-transformed firing rate of a neuron as a function of its hubness score. Color codes for hubness score. In (A), colored dots indicate

individual neurons. In (E), data are presented as median, 25th percentile, 75th percentile, and interquartile range, and the shaded area represents the probability

density of the variable. Asterisks in (A) and (B) indicate a significant effect of firing rate and in (E) of hubness score. ***p < 0.001, linear mixed-effect models.
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Figure 5. Spiking neural network modeling of the distribution shape of SUA statistics in the developing PFC

(A) Schematic representation of the neural network model.

(B and C) Same as (A) for the three synaptic parameters (B) and the simulation parameters that were treated as random variables (C).

(D) Schematic representation of the parameters that were used to evaluate the distribution shape of the experimental and simulated spiking data (left) and the

approach that was used to evaluate the distance between experimental and simulated data (right). Note that the plot is for visualization purposes only. Even

though only three dimensions are shown, the distance between simulated and experimental data were calculated in a seven-dimensional space. Color in the

scatterplot codes for age.

(E) Violin plot displaying the distance between simulated data and the center of mass of experimental data as a function of the number of synaptic parameters set

in their ‘‘extreme’’ configuration.

(F) Multivariate regression coefficients for the three synaptic parameters over the distance from the center of mass of experimental data. In (E), data are presented

as median, 25th percentile, 75th percentile, and interquartile range, and the shaded area represents the probability density of the variable. In (F), regression

coefficients are presented as mean and 95% CI.
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Extreme synaptic distributions are necessary to
recapitulate early PFC activity in a spiking neural
network model
We hypothesized that, to generate such extreme distributions

of the SUA statistics, analogously extremely distributed struc-

tural synaptic parameters are necessary. To explore this prop-

osition, we simulated �8,000 spiking neural networks of inter-

connected conductance-based leaky integrate-and-fire (LIF)

neurons. The networks mimicked spontaneous activity: they

did not receive any structured input and did not perform any

task. The simulated networks had no spatial structure and

consisted of 400 neurons, 80% of which were excitatory

(PYRs) and 20% inhibitory (INs), in line with anatomical data

for neocortical areas.59,60 PYRs were simulated with outgoing

excitatory AMPA synapses, while INs were equipped with out-

going inhibitory GABAergic synapses (Figure 5A). In these

models, we investigated how the simulated firing statistics

were affected by three structural (synaptic) parameters: (1)

whether the size of synapses followed a normal or a log-

normal distribution, (2) whether the number of synapses of in-

dividual neurons followed a normal or a log-normal distribu-

tion, and (3) whether the number of dendritic and axonic

(incoming and outgoing) synapses were correlated or uncorre-

lated with each other (Figure 5B). This resulted in a total of 23 =

8 possible synaptic parameters combinations. To avoid

choosing an arbitrary structural network architecture to test

the effect of these three variables, a set of other parameters

(average size of AMPA and GABA synapses, average connec-

tivity, and the strength of the noisy input driving PYRs and INs)

were randomly drawn from a range of biologically constrained

values (see STAR Methods for details) (Figure 5C). Given that

the general structural network architecture is inspired by the

neocortical anatomical organization (e.g., average connectivity

and proportion of PYRs and INs), the simulated data were

compared to PFC recordings.

To evaluate how accurately the different structural network

architectures recapitulated the SUA statistics of the devel-

oping PFC, we employed the same parameters that we used

to describe the experimental data. For each simulation, we

computed the simulated firing rates and STTC, and, for both

variables, we extracted their skewness, kurtosis, Gini coeffi-

cient, and the correlation between log-transformed firing

rates and average STTC. We then derived the coordinates

of the center of mass of the experimental data in this seven-

dimensional parameter space and calculated the Euclidian

distance from every simulation (see simplified scheme in

Figure 5D).

Using multivariate linear regression, we observed a

decrease in the distance from the experimental data’s center

of mass as a function of the number of structural parameters

set in its extreme configuration (log-normal distribution of syn-

apse size and number, and correlated number of incoming

and outgoing synapses) (Figure 5E). Further, the distance

from the experimental center of mass decreased supra-line-

arly as a function of the number of extreme parameters (0–1

extreme parameters distance difference = 0.07, 1–2 extreme

parameters distance difference = 0.09, 2–3 extreme parame-

ters distance difference = 0.12, linear model) (Figure 5E).

This effect is also visually appreciable when the seven dimen-

sions in which we evaluated the model fit are reduced using

t-distributed stochastic neighborhood embedding (tSNE) (Fig-

ure S6A). When few synaptic parameters are set to their

extreme configuration, there is little to no overlap between

experimental and simulated data. Conversely, when all three

synaptic parameters are set to their extreme configuration,

the areas of maximum density of the two distributions are

overlapping (Figure S6A).

Taken individually, the structural parameter with the largest ef-

fect on the average distance from the experimental data’s center

of mass was the distribution of synapse number (regression co-

efficient = �0.16, linear model), followed by the distribution of

synaptic weight (regression coefficient = �0.06, linear model)

and by the proportionality of incoming and outgoing synapses

(regression coefficient = �0.06, linear model) (Figure 5F). Next,

we considered the effect of the three synaptic parameters on in-

dividual properties of the simulated SUA statistics (Figures S6B–

S6H). We found that the distribution of the synapse number had

the largest effect on (1 and 2) skewness of firing rate and STTC,

(3) the kurtosis of STTC, (4) the Gini coefficient of firing rate and

(5) the log-log correlation between firing rate and average STTC.

The proportionality of incoming and outgoing synapses had

the largest effect on (1) the kurtosis of firing rate and (2) the

Gini coefficient of STTC. The distribution of synaptic weights

did not have the largest effect on any of the seven parameters

(Figures S6B–S6H). Lastly, we run a separate set of simulation

varying network size and found that it only minimally affected

the distance between simulated and experimental data

(Figure S6J).

Taken together, these data indicate that, in spiking neural net-

works simulations, extreme distributions of synaptic parameters

are required to stably recapitulate the SUA statistics that we

observed in the developing PFC. The distribution of synapse

number on individual neurons is the synaptic parameter with

the largest influence on the model fit. However, all three synaptic

parameters play a significant role and influence different aspects

of the simulated data.

The shape of the SUA statistics distributions is stable
throughout adulthood, while the oligarchy decreases
with age
So far, we have shown that, already shortly after birth, the brain

has a right-skewed, heavy-tailed, and unequal distribution of

SUA statistics that largely does not vary during the first two post-

natal weeks. Since similar properties have been previously re-

ported for the adult brain, the question arises of whether and

how the extremeness of these parameters varies throughout

late development and into adulthood. To address this question,

we chronically recorded from the PFC of head-fixed mice from

P16 to P60 (n = 24 mice, 95 recordings, 2,498 single units, and

36,899 spike train pairs).

SUA firing rate and STTC did not vary with age (age coeffi-

cient = �0.003 and �10�4, CI [�0.003; 0.001] and [�6 3 10�4;

43 10�4], p = 0.28 and p = 0.63, respectively, generalized linear

mixed-effect model) (Figures S7A and S7B).

Analogously to the data for the neonatal brain, the skewness

of the SUA statistics did not change also for the P16–60
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developmental time window (age coefficient = �0.004 and

�0.01, CI [�0.02; 0.007] and [�0.02; 0.003], p = 0.49 and p =

0.14, for firing rate and STTC, respectively, linear mixed-effect

model) (Figure 6A). Along the same line, also the kurtosis (age co-

efficient = �0.001 and �0.001, CI [�0.005; 0.002] and [�0.005;

0.002], p = 0.42 and p = 0.55, for firing rate and STTC, respec-

Figure 6. Skewness, kurtosis, Gini coefficient,

and correlations of firing rate and STTC in

P16–60 mice

(A) Scatterplot displaying the skewness of firing rate

(left) and STTC (right) of P16–60 mice (n = 24 mice

and 95 recordings). Color codes for age with 1-day

increments.

(B and C) Same as (A) for kurtosis (B) and Gini coef-

ficient (C).

(D) Line plot displaying the log-transformed average

STTC as a function of log-transformed firing rate

across ages (n = 24 mice and 2,498 single units).

Color codes for age.

(E) Same as (A) for the Pearson correlation between

log-transformed average STTC and log-transformed

firing rate within individual mice. In (A–C) and (E),

colored dots indicate individual recordings. In (D),

data are presented as mean and 95%CI. Asterisks in

(D) and (E) indicate a significant effect of age.

***p < 0.001, **p < 0.01, linear mixed-effect models.

p values in (A)–(C) refer to the effect of age, linear

mixed-effect models.

tively, linear mixed-effect model) and the

Gini coefficient (age coefficient = 10�5 and

7 3 10�4, CI [�0.001; 0.001] and [�0.002;

8 3 10�4], p = 0.99 and p = 0.34, for firing

rate and STTC, respectively, linear mixed-

effect model) of the two variables remained

constant for the investigated time window

(Figures 6B and 6C).

Similar to what reported for early devel-

opment, also in the adult PFC the log-trans-

formed firing rate of a neuron and its

average STTC strongly correlated with

each other (average STTC coefficient =

1.53, CI [1.34; 1.71], p < 10�56, linear

mixed-effect model) (Figure 6D). However,

fitting a model that included an interaction

of STTC with age revealed that the correla-

tion strength between the two variables

decreased over late development (age and

average STTC interaction coefficient =

�0.03, CI [�0.05; �0.02], p < 10�5, linear

mixed-effect model) (Figure 6D). Accord-

ingly, the Pearson correlation between firing

rate and average STTC on an individual-

mouse basis robustly declined with age,

from roughly�0.6 to�0.3 (age coefficient =

�0.006, CI [�0.009; �0.002], p = 0.001,

linear mixed-effect model) (Figure 6E).

Thus, in the mouse PFC, the extreme-

ness of SUA statistics distributions does not significantly

change between P16 and P60. However, the correlation

between firing rate and STTC is roughly halved from

P16 to P60, indicating that the oligarchical state in PFC

is more pronounced during early development than at

adulthood.
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Inhibitory synaptic plasticity parsimoniously explains
the gradual disappearance of the oligarchy
Throughout the same developmental phase during which we

observed a decrease in the correlation between the firing rate

of a neuron and its average STTC, the cortex transitions into

a state of detailed E-I balance,61 a phenomenon that has

been linked to inhibitory synaptic plasticity.62 Given the critical

role that E-I ratio plays in controlling correlations among neu-

rons,39 we hypothesized that this transition might explain the

progressive decline of the correlation between firing rate

and STTC.

To test this hypothesis, we resorted to spiking neural network

modeling with an architecture analogous to the one used to

model early cortical activity. After an initial period in which the

networks were run with frozen synaptic sizes and all the synaptic

parameters in their extreme configuration, we added symmetric

spike-time-dependent inhibitory plasticity (ISTDP) on the synap-

ses connecting INs to PYRs62 (Equation 1) and classic asym-

metric Hebbian plasticity (STDP) on PYR-PYR excitatory synap-

ses63 (Figure 7A). The original formulation of the ISTDP rule

implemented a single target firing rate (a, Equation 1) for the

entire population of PYRs. In this study, we instead decided to

draw a from a log-normal distribution to better recapitulate the

diversity of the experimentally observed firing rates (see STAR

Methods for details):

dW

dt
=

hðpre � post � a � preÞ
tSTDP

(Equation 1)

whereW is an IN-PYR synaptic weight, pre and post are the pre-

and post-synaptic activity, a is the target rate for the post-synap-

tic PYR and is drawn from a log-normal distribution, tSTDP is the

decay time constant of the plasticity rule, and h is the learning

rate.

Analogously to the approach that we previously described,

also for this set of simulations, we treated several other structural

parameters as random variables, and we systematically varied

them within the same biologically constrained range of values

that we employed for the former simulations. To evaluate the ef-

fect of synaptic plasticity, we compared the SUA statistics of the

frozen synapses phase and those of the last fifth of the simulated

data, a phase in which synaptic changes were stable (Figure 7B).

Analogously to previous results,62 we observed that adding

ISTDP resulted in a network with detailed E-I balance. ISTDP

increased the correlation between incoming excitatory and

inhibitory currents across neurons (Figure 7C, top) and reduced

the temporal mismatch (i.e., the absolute value of the difference)

between excitatory and inhibitory currents across time

(computed in 5-s bins) within individual neurons (Figure 7C,

bottom).

In line with our hypothesis, we found that adding ISTDP and

STDP to the network also decreased the correlation between

firing rate and average STTC, similarly to what we experimentally

observed in P16–60 mice (mean decrease in firing rate – average

STTC correlation in simulated data = 0.16, in experimental data =

0.26, CI [0.11; 0.41], Figures 7D and 7E). When we further evalu-

ated the effects of synaptic plasticity, we found that it only

Figure 7. Spike-time-dependent inhibitory

synaptic plasticity decreases the correlation

between firing rate and STTC

(A) Schematic representation of the simulated

inhibitory (top) and excitatory (bottom) synaptic

plasticity rules.

(B) Line plot of the IN-PYR (top) and PYR-PYR

(bottom) synaptic weight changes over time. The

shaded area indicates the period without synaptic

plasticity.

(C) Line plot of excitatory and inhibitory currents

correlation (top) and absolute difference (bottom)

over time. The shaded area indicates the period

without synaptic plasticity.

(D) Scatter and line plot of a representative

example of the correlation between simulated

firing rate and average STTC before (yellow) and

after (blue) synaptic plasticity.

(E) Histogram plot of the difference in simulated

firing rate and average STTC correlation before

and after synaptic plasticity. The black line in-

dicates the mean of the experimental data, the two

gray lines the 95% CI of the mean, and the red line

the mean of the simulated data. In (B) and (C), in-

dividual black lines represent individual simula-

tions and the red line represents the mean across

simulations. For visualization purposes, only one-

fifth of the individual simulations are shown. In (D),

individual dots represent individual simulated

neurons, and data are presented as mean and

95% CI.
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minimally affected the skewness, kurtosis, and Gini coefficient

of firing rate and STTC, in line with the experimental data

from the PFC of P16–60 mice (Figure S7). Of these six parame-

ters, only the kurtosis and the Gini coefficient of firing rate

were narrowly outside the 95% CI of the experimental values

(Figures S7C–S7H).

To investigate the differential role of ISTDP and STDP in

decreasing the correlation between firing rate and average

STTC, we next run two sets of simulations with only one of

the two synaptic plasticity rules. These simulations revealed

that, while ISTDP-only networks displayed a decrease be-

tween firing rate and average STTC that was comparable to

networks with both synaptic plasticity rules, the correlation

between the two variables was unchanged in STDP-only

networks (Figure S7I). However, ISTDP-only simulations pro-

vided an overall significantly worse fit to the experimental

data than networks with both synaptic plasticity rules (Fig-

ure S7J). Thus, the two synaptic plasticity rules have different

effects on the simulated spiking activity. ISTDP is mainly

responsible for the decrease in the oligarchical organization,

whereas STDP allows this to happen while only minimally

affecting the skewness, kurtosis, and Gini coefficient of firing

rate and STTC.

Taken together, these data indicate that adding ISTDP and

STDP to a spiking neural network parsimoniously recapitulates

the developmental decrease in the correlation between firing

rate and STTC while only minimally affecting the distribution

shape of the two variables, consistent with what we observed

in the PFC of P16–60 mice.

DISCUSSION

A fascinating property of the adult brain is that a large number of

parameters, ranging from the size of synapses to the power of

extracellular currents,1,3,4 follow extreme distributions. This or-

ganization has been suggested to have many desirable proper-

ties,10,27 but how and when it arises is still a matter of debate.

Here, we report that, in the PFC andOB, two brain regions exem-

plifying slow and fast maturational dynamics, in the first days of

extrauterine life, the distributions of first- and second-order SUA

statistics are already extreme: right skewed, heavy tailed, and

highly unequal. While the central tendency of these distributions

varies across development, their shape remains largely un-

changed until adulthood. We also show that early brain activity

is in an oligarchical state in which high-firing-rate neurons

display hub-like properties and exert a disproportionate influ-

ence on their local network, a phenomenon that becomes less

prominent as mice age. Leveraging spiking neural network

modeling, we demonstrate that, to recapitulate these network

properties, analogously extremely distributed synaptic parame-

ters are needed. We conclude by showing that the progressive

disappearance of the oligarchical state can be parsimoniously

explained by introducing an inhibitory synaptic plasticity rule

that establishes a detailed excitation-inhibition balance. This

work suggests that the distribution shape of structural and func-

tional neural parameters is not fundamentally altered by devel-

opmental processes but rather is preconfigured and experience

independent.

In altricial animals such as rodents, the first postnatal week

roughly corresponds to mid-late gestation in humans.38 At this

early stage, brain activity has several unique traits, such as

discontinuity,38 highly correlated spiking activity,39,47,48 the

presence of transient cell types and circuits,64 extremely low

firing rates,39,65 low levels of inhibition,39,66,67 and a loose tempo-

ral coordination of excitation and inhibition.61,62 Importantly,

sensory systems are still very underdeveloped. In rodents, the

retina becomes light sensitive around P8–P9,65,68 and eye open-

ing only takes place around P14–P15, a few days after hearing

onset occurs.69 The whisking-related sensory system also fol-

lows a similar timeline. In the first postnatal week, �90% of

whisker movements do not induce increased firing rate in the so-

matosensory cortex, and �90% of firing in the somatosensory

cortex is unrelated to whisker movements.70 Even after splitting

whisker movements by size and only considering the few large

ones that occur, the somatosensory cortex is active concomi-

tantly with a whisker movement less than 50% of the time.71

Whisker-elicited sensory responses are initially mainly the result

of passive stimulations by the dam and the littermates, while

robust active whisking only emerges around P10–P12.72–74

Solely the olfactory system follows a distinct developmental dy-

namic and, even though it is also still developing,75 it is already

functional and behaviorally relevant in the first postnatal

days.36,37 Despite the paucity of sensory information that is

therefore available in the first postnatal week, we find that the

distribution of SUA statistics is already extreme and does not

significantly vary from early development to adulthood. Corrob-

orating the idea that experience does not play a significant role in

this process, we find no differences between the OB, which is

already ‘‘online,’’ and the PFC, which is supposed to be one of

the slowest-developing brain regions.38 We further show that,

already from P4 onwards, the PFC also displays a complex

network topology that is reminiscent of small-world networks,

a property that is typical of many real-world networks,76

including the adult brain53–55 (but see Hilgetag and Goulas56).

These results are difficult to reconcile with the hypothesis that

brain structure is initially ‘‘diffuse’’ and only later acquires the

structural organization that is typical of the adult brain.30,31,77

Rather, they support several recent studies that have highlighted

the importance of ‘‘nature over nurture’’78,79 in establishing neu-

ral circuits and the distributions of their parameters. For instance,

in neuronal cultures, the variance of glutamatergic synaptic sizes

does not differ between networks that are silenced from plating

onwards and networks that are spontaneously active.7 Similarly,

cultures of dissociated neurons exhibit the ability to self-organize

into a complex network topology with small-world properties

that are characterized by extreme distributions of firing rates

and connection weights.52 Extreme distributions of firing rates

and functional connectivity are also observed in human brain or-

ganoids,80–82 which, despite not having access to sensory in-

puts, even display structured spiking ‘‘protosequences.’’82

Along the same lines, in vivo blocking of synaptic transmission

in the mouse hippocampus does not alter the distribution of

spine sizes,83 and ‘‘soloist’’ neurons (uncorrelated to the overall

local firing) coexist with ‘‘choristers’’ (strongly correlated with

local firing) already in the first postnatal week.84 Even more sur-

prisingly, completely abolishing all central nervous system
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activity for the first 4 days of life of the larval zebrafish only mini-

mally affects the tuning and functionality of neurons and the abil-

ity of the fish to learn a complex visuomotor task.78 Intriguingly,

similar concepts are beginning to percolate also in the field of

artificial intelligence,85 which has traditionally been dominated

by a bottom-up and learning-based approach.

The relationship between the firing rate of a neuron and the

strength of its pairwise interactions with other neurons is com-

plex and still debated. A number of experimental and theoretical

studies found a positive correlation between the two vari-

ables.86–89 However, this relationship has also been reported

to be absent or even negative.90–93 Here we show that, in the

PFC and OB of P4–12 mice, there is a strong positive correlation

between firing rate and average pairwise interaction of a neuron,

as measured by the STTC coefficient. Thus, neurons with

extreme firing rates are also likely to have extreme average

STTC values, an organization that we refer to as oligarchical.

The correlation between firing rate and STTC weakens

throughout development, but it is present also in adulthood. In

the early PFC, firing rate also correlates with a neuron’s hubness

score, a composite metric that encompasses four different mea-

sures of local and global hubness. The topic of hub neurons,

defined as a subclass of neurons that has an outsized influence

on the network activity, has been the subject of extensive exper-

imental and theoretical research in the developing brain.58,94–96

In agreement with our results, hub neurons in the developing en-

torhinal94,95 and barrel cortex58 are also characterized by high

firing rates and high functional connectivity, a prediction that is

shared by theoretical work.97 Previous work has also shown

that hub neurons are generally INs, something that we could

not investigate in the current study due to the difficulty of sepa-

rating INs and PYRs based on their waveform properties in the

early developing brain.98 This work further shows that, in a neural

network model, adding inhibitory synaptic plasticity results in

detailed E-I balance and decreases the influence of high-firing-

rate neurons on the network activity. Thus, we propose that

the loose temporal E-I balance that is typical of the developing

brain61,62 might be a permissive mechanism for the role exerted

by hub neurons on their surroundings. Whether the develop-

mental shift of E-I ratio toward inhibition39,66 also plays a role re-

mains to be investigated.

Lastly, we show that there is a mechanistic link between the

distribution of structural (synaptic) and functional (SUA statistics)

parameters. In particular, we report that, in a spiking neural

network model, three synaptic parameters have a strong influ-

ence on the extremeness of the simulated spiking activity: (1)

whether the size of synapses follows a log-normal distribution,

(2) whether the number of synapses of individual neurons follows

a log-normal distribution, and (3) whether the number of dendritic

and axonic (incoming and outgoing) synapses are correlated

with each other. The three parameters have a synergistic effect

on the model goodness of fit to the experimental data and a

distinct impact on different properties (skewness, kurtosis, and

Gini coefficient) of the simulated firing rate and STTC distribu-

tions. While a large body of evidence supports the notion that

the size and number of synapses follow an extreme distribution,1

to the best of our knowledge, whether the number of dendritic

and axonic synapses are correlated with each other has not

been explicitly investigated in mammals. However, a recent

study found that, in the mouse PFC, the length of a neuron’s

dendrite and axon are positively correlated.99 Further, in a full-

brain Drosophila melanogaster reconstruction, the numbers of

incoming and outgoing synapses are tightly correlated with

each other (Person coefficient = 0.8).100 The fact that extremely

distributed synaptic parameters are required to faithfully repro-

duce the SUA statistics of the developing PFC suggests that

the distribution of synaptic parameters is also experience

independent.

In summary, we report that the extremeness with which func-

tional and structural parameters are distributed is stable across a

large portion of the lifespan, which suggests that the brain is in a

preconfigured state and that experience-dependent processes

do not fundamentally alter this aspect of its organization. Further

elucidating the principles underlying the establishment of neural

circuits might prove insightful for advancing the field of biological

and artificial intelligence alike.

Limitations of the study
This study has several limitations. First, despite investigating

mice from a very early developmental phase, and doing so

also in the PFC, one of the slowest-developing brain regions,

we cannot exclude that some experience-dependent processes

have not already taken place. Second, we do not directly exper-

imentally probe whether the distribution shape of synaptic pa-

rameters is stable across the first postnatal weeks. However,

our modeling results generate a number of predictions that could

be experimentally addressed: (1) synapse size and number on in-

dividual neurons follow extreme distributions already in the first

postnatal week, (2) the shape of these distributions should be

stable across development, and (3) the number of incoming

and outgoing synapses should be tightly correlated. Third, while

our results argue against a role of experience in shaping these

processes, we do not provide an alternative mechanistic answer

to the question. This topic has, however, already been the sub-

ject of a number of theoretical studies.7,9,83,97 Further, we gener-

ated a large and detailed experimental open-access database

that could be instrumental in benchmarking future research on

this topic. An approach that we believe might be of particular in-

terest is that of generative models.101,102 Illustrating the promise

of this approach, generative models solely based on spatiotem-

poral gradients of neuronal development103 or homophily princi-

ples81 can recapitulate important features of the complex topol-

ogy of adult brains.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Mattia

Chini (mattia.chini@zmnh.uni-hamburg.de).

Materials availability
The study did not generate new unique reagents.

Data and code availability
d SUA data that was newly generated for this study is available at the following open-access repository: https://gin.g-node.org/

mchini/Chini_et_al_Preconfigured

d Code, processed data and statistical analysis supporting the findings of this study are available at the following open-access

repository: https://zenodo.org/doi/10.5281/zenodo.11091323

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All experiments were performed in compliance with the German laws and following the European Community guidelines regarding

the research animal’s use. All experiments were approved by the local ethical committee (G132/12, G17/015, N18/015, N19/121).

Experiments were carried out on C57BL/6J mice of both sexes. Mice were housed in individual cages on a 12 h light/12 h dark cycle,

andwere given access towater and food ad libitum. P16-60micewere housedwith aminimumof two cage-mates after weaning. The

mice had access to nesting material in the form of tissues and wooden gnawing material. The day of birth was considered P0. Details

on the data acquisition and experimental setup of open-access datasets that were used in this project have been previously

published.39,40

METHOD DETAILS

In vivo electrophysiology in P4-12 mice
Surgery. In vivo extracellular recordings were performed from the PFC and the ventral portion of the OB of non-anesthetized P4-P12

mice. The surgery and animal preparation were analogous for the two brain regions. Before starting with the surgical procedure, a

local anesthetic was applied on the neck muscles (0.5% bupivacain/1% lidocaine). The surgery was performed under isoflurane

anesthesia (induction: 5%; maintenance: 1–3%, lower for older pups, higher for younger pups). Neck muscles were severed to mini-

mize muscle artifacts. A craniotomy over the PFC (0.5 mm anterior to bregma, 0.1–0.5 mm lateral to the midline) or the OB (0.5–

0.8 mm anterior to frontonasal suture, 0.5 mm lateral to inter-nasal suture) was performed by carefully thinning the skull and then

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw Data This paper https://gin.g-node.org/mchini/Chini_et_al_Preconfigured

Experimental Models: Organisms/Strains

Mouse: C57BL6/J The Jackson Laboratory Strain #: 000664

Software and Algorithms

Original code This paper https://zenodo.org/doi/10.5281/zenodo.11091323

Python 3.11.3 Python Software Foundation https://www.python.org/

MATLAB R2019b Mathworks https://ww2.mathworks.cn/

R 4.3.1 The R Foundation for Statistical

Computing

https://www.r-project.org/

Other

Phase 3B Neuropixels 1.0 silicon probes IMEC, Belgium www.neuropixels.org
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removing it with the use of a motorized drill. Mice were head-fixed into a stereotactic frame and kept on a heated (37�) surface sur-

rounded by cotton wool throughout the entire recording. To record from the PFC, a Neuropixels probe 1.0 phase 3B (Imec, Belgium)

was slowly vertically inserted (angle 0�) into the frontal lobe (insertion time 20–30 min), at a depth varying between 2.6 and 4 mm de-

pending on the age of the animal. Due to the small size of the brain, in younger animals, not all 384 recording channels were inserted in

the brain. The tip of the probewas used as reference. To record from theOB, a single-shank silicon probe (NeuroNexus,MI, USA) with

16 recording sites and 50 mm inter-site spacing was vertically inserted (angle 0�) at a depth varying between 1.0 and 2.0 mm. A silver

wire inserted in the cerebellum was used as reference. Both probe types were inserted using a micromanipulator. Before signal

acquisition, mice were allowed to recover for �45 min, to maximize the quality and stability of the recording as well as single units’

yield.

Signal acquisition. For PFC recordings, signals from the bottom 384 channels were recorded at a 30 kHz using the Neuropixels

head-stage 1.0 and Neuropixels 1.0 PXIe acquisition system (Imec, Belgium). The SUA signal was acquired through the

OpenEphys interface and the Neuropixels plugin (AP gain = 500, AP Filter Cut = ON). For OB recordings, signals were band-pass

filtered (0.1–9 kHz) and digitized (32 kHz) by a multichannel amplifier (Digital Lynx SX; Neuralynx, Bozeman, MO, USA) and acquired

through the Cheetah acquisition software (Neuralynx, Bozeman, MO, USA).

Histology. Epifluorescence images of coronal brain sections were acquired postmortem to reconstruct the position of the DiI-

stained recording electrode. Only mice in which the electrodes were placed in the correct position were kept for further analysis.

In vivo electrophysiology in P16-60 mice
Surgery.Acute In vivo extracellular recordings were performed from the PFCof awake, head-fixedmice of both sexes. Before starting

with the surgical procedure to implant a metal head-plate (Neurotar, Helsinki, Finland) for head-fixation, buprenorphine (0.5 mg/kg

bw) was injected subcutaneously. The surgery was performed under isoflurane anesthesia (induction: 5%; maintenance: 2.5%).

Anesthesia depth was confirmed with the paw withdrawal reflex. Eyes were covered with an ointment (Vidisic, Bausch + Lomb, Ber-

lin, Germany) to prevent them from drying out. After disinfection with Betasisodona, the scalp was removed from the top of the head

and the edges treated for analgesia with application of a Lidocain/Bupivicain mixture (0.5% bupivacain/1% lidocaine). A craniotomy

was performed to make the mPFC (0.5–2.0 mm anterior to bregma, 0.1–0.5 mm right to the midline) accessible for recordings. A syn-

thetic window was fixed to the skull around the craniotomy to be able to protect the tissue with Kwik-Cast sealant (World Precision

Instruments, Friedberg, Germany). A silver wire, serving as a ground and reference electrode, was inserted between the skull and

cerebellum. The metal head-plate was attached to the skull with dental cement. For recovery from anesthesia, mice were placed

in a cage on a heating mat and after being fully awake, they were put back into their home cage with their cage mates. For further

analgesia, Metacam (0.5 mg/mL, Boehringer-Ingelheim, Germany) was mixed into soft food and provided for 48 h after the surgery.

Training and signal acquisition. After recovery from the surgery, mice were accustomed to the head-fixation system and trained to

move the air-lifted carbon cage from the MobileHomeCage system (Neurotar, Helsinki, Finland). To perform electrophysiological re-

cordings, the craniotomy was uncovered and an electrode (NeuroNexus, MI, USA) was stereotactically inserted into the mPFC (one-

shank, A1x16-channel, 100 mm-spaced, 2.0 mm deep). The signal was acquired for 30–40 min. Extracellular signals were band-pass

filtered (0.1–9000 Hz) and digitized (32 kHz) with a multichannel extracellular amplifier (Digital Lynx SX; Neuralynx, Bozeman, MO,

USA). During the electrophysiological recordings, mice were head-fixed and able to move the air-lifted platform, mimicking free loco-

motion.104,105 All mice showed a combination of voluntary movement and quiet wakefulness. To ensure that we analyzed data from a

consistent behavioral state, we excludedmovement periods from further analysis. For a subset of mice, we also recorded eyemove-

ment and pupil size, and did not detect any sleep epoch. We focused our analysis on periods of quiet wakefulness because these

behavioral epochs were much more abundant and displayed a higher signal quality. Multiple electrophysiological recordings were

performed in the same animal, with a minimal recovery period of two days in between the recordings. Between recording sessions,

mice were housed in their standard housing conditions and did not perform any particular behavioral task.

Histology. Epifluorescence images of coronal brain sections were acquired postmortem to reconstruct the position of the

recording electrode. To this aim, after the last recording, a DiI-coated electrode was inserted. Only mice in which the electrodes

were placed in the correct position were kept for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spike sorting
P4-12 PFC recordings were spike-sorted with Kilosort 2.5106 (fshigh = 500, minFR = 0.001, spkTh = �4, sig = 20, nblocks = 5). All

other recordings were spike-sorted with Klusta.107 Automatically-obtained clusters were manually curated using phy (https://

github.com/cortex-lab/phy).

SUA firing statistics and shape distribution parameters
Firing rate. Firing rate (in Hz) was computed as the number of spikes divided by the total recording length in seconds.
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Spike-Time Tiling Coefficient (STTC)

The STTC (timescale of 10 ms) was computed as follows39,41:

STTC =
1

2

�
PA � TB

1 � PATB

+
PB � TA

1 � PBTA

�
(Equation 2)

where PA is the proportion of spikes of spike train A that occurs within ±Dt of a spike train B spike. TA is the proportion of time that

occurs within (is ‘‘tiled’’ by) ±Dt from spikes of spike train A. The same applies for PB and TB. ±Dt is the lag parameter and was set at

10 ms.

Skewness

Skewness was computed using the homonymous MATLAB function skewness as:

skewness = E

"�ðX � mÞ
s

�3
#

(Equation 3)

Where X is the random variable of interest, m is its mean, s its standard deviation, and E is the expectation operator.

Kurtosis

Kurtosis was computed using the homonymous MATLAB function kurtosis as:

kurtosis = E

"�ðX � mÞ
s

�4
#

(Equation 4)

Where X is the random variable of interest, m is its mean, s its standard deviation, and E is the expectation operator.

Gini coefficient

TheGini coefficient was computed using theMATLAB function gini108. The Gini coefficient is calculated by taking the ratio of the area

that lies between the line of equality and the Lorenz curve, over the total area under the line of equality.

Complex network properties
To calculate the network properties of the developing brain, we utilized symmetrical STTCmatrices. The pre-processing consisted of

thresholding and binarization. To threshold the data, we computed surrogate spiking data for eachmouse individually. To account for

the slow co-modulation of firing rates that is typical of the developing brain, we generated surrogate spiking data by leaving the timing

of spikes unaffected and shuffling the identity of the neuron that emitted the spike. This pseudo-randomization thus generated sur-

rogate spike vectors while preserving the population rate. Using these spike vectors, we then computed at least 1000 STTC values on

shuffled data, and used the 90th percentile value to threshold and binarize the real-data STTC matrices. The binary and undirected

matrices were then analyzed with the MATLAB Brain Connectivity Toolbox.51

The clustering coefficient and transitivity of the matrices were extracted with the clustering_coef_bu and transitivity_bu functions,

respectively. To compute the characteristic path length, we first computed the distancematrix (distance_bin) and then computed the

characteristic path length (charpath) without including distances on the main diagonal and infinite distances. All these values were

normalized by dividing them with a corresponding ‘‘null’’ value that was computed by generating 100 synthetic random networks

(makerandCIJ_und), extracting the same parameters for each iteration, and computing the average. Small-worldness was computed

by dividing the normalized clustering coefficient by the normalized characteristic path length.

The four ‘‘hubness’’ parameters that we used to compute the composite ‘‘hubness score’’ were also extracted with the same

MATLAB toolbox. For each node individually, we computed its total amount of edges (i.e., its degree, using degrees_und), its total

amount of weights (strengths_und, this is the only parameter that was computed on weighted and not binary matrices), its between-

ness centrality (betweenness_bin, after usingweight_conversion and ‘lengths’) and its closeness centrality (the inverse of the node’s

average distance computed with distance_bin).

Neural network modeling
All simulations were performed using Brian2 for Python3.7.109

General structural neural network architecture

The architecture of the network39,110 is schematically illustrated in Figures 6A–6C. The network was composed of 400 conductance-

based leaky integrate-and-fire neurons, 80% of which were excitatory (PYRs) (N = 320) and 20%were inhibitory (INs) (N = 80). PYRs

were simulated with outgoing excitatory synapses and INs with outgoing inhibitory synapses. Excitatory (PYR/PYR, PYR/IN) and

inhibitory (IN/IN and IN/PYR) synapses were simulated as AMPA and GABA conductances, respectively. Due to the near-instan-

taneous rise times of AMPA- and GABA-mediated currents (both typically <0.5 ms), we opted to neglect these in the simulations.

Synaptic transmission was assumed to be instantaneous (i.e., with zero delay).

The dynamics of each excitatory and inhibitory cell were governed by the following stochastic differential equation:

Cm

dVm

dt
= � gLðVm � VLÞ � gAMPAðVm � EAMPAÞ � gGABAðVm � EGABAÞ+ sx (Equation 5)

Cell Reports 43, 114267, June 25, 2024 19

Article
ll

OPEN ACCESS



with dgAMPA

dt
= � gAMPA

tAMPA

(Equation 6)

and

dgGABA

dt
= � gGABA

tGABA

(Equation 7)

where Vm is the membrane potential, VL is the leak membrane potential and EAMPA and EGABA denote the AMPA and GABA current

reversal potentials, respectively. The synaptic conductance parameters and the corresponding decay time constants are denoted by

gAMPA, gGABA and tAMPA, tGABA, respectively. sx is a noise term that is generated by an Ornstein-Uhlenbeck process with zero mean.

The networks were simulated for a duration of 10 s (simulations without plasticity) or 50 s (simulations with plasticity). All simulations

were performed with a time step (dt) of 0.1 ms and integrated with Euler’s method. All parameter values/ranges used in the simula-

tions are listed in Table S1.

Random variables

To avoid choosing an arbitrary structural neural network architecture, a number of parameters were treated as ‘‘random variables’’

and systematically varied across a biologically-constrained range. These parameters included: 1) the noisy input (Ornstein-

Uhlenbeck process) that was used to independently drive PYRs and INs; 2) themean probability with which neurons were connected,

which was the same for all possible population combinations: i) PYR-PYR, ii) PYR-IN, iii) IN-PYR, iv) IN-IN; 3) the mean size of excit-

atory and inhibitory synaptic weights.

Synaptic parameters
In these networks, we studied the influence on the simulated SUA statistics exerted by three synaptic parameters: whether the size of

synapses followed a normal or a log-normal distribution, whether the number of synapses of individual neurons followed a normal or a

log-normal distribution, and whether the number of dendritic and axonic (incoming and outgoing) synapses were correlated or un-

correlated with each other. The 2 possible configurations for the 3 synaptic parameters resulted in 23 = 8 different network types, of

which we simulated 1000 each. These 3 synaptic parameters were simultaneously varied for the entire network and not in a neuronal

population-specific manner.

Number of synapses and correlation between dendritic and axonic synapses

We first generated a normal (mean = 1, std = 1/4) or log-normal (mean of the underlying normal = 0, std of the underlying normal = 0.5)

relative distribution of the number of connections that was normalized to have a sum = 1. To account for the different number of con-

nections in different simulations (see previous paragraph Random variables), the relative distribution was then scaled by the total

amount of connections between the pre- and post-synaptic population according to:

tot: connections = Npre � Npost �mean connectivity (Equation 8)

Where Npre is the number of presynaptic neurons (PYRs or INs), Npost is the number of postsynaptic neurons (PYRs or INs) and

mean connectivity is a parameter that is randomly varied between simulations. Please note that, due to the normalization, the fact

that the two original distributions have a different mean is irrelevant. This process was repeated until the simulated number of con-

nections had no negative values and no values exceeded the maximum amount of possible synaptic partners (Npre or Npost). In the

case of uncorrelated incoming and outgoing number of synapses, the same procedure was then repeated for the distribution of pre/

post-synaptic partners. In simulations in which the number of incoming and outgoing synapses was correlated, the number of pre-

synaptic connections was drawn using a random number generator (numpy function rng.choice), in which the maximum value

(a, following the nomenclature of rng.choice) was set equal to the number of pre/post-synaptic neurons, the number of values to

draw was equal to tot. connections (size, following the nomenclature of rng.choice) and the probabilities associated with each pre-

synaptic neuron were equal to the number of outgoing connections of that neuron (p, following the nomenclature of rng.choice). This

resulted in a Pearson correlation of the number of incoming and outgoing synapses �0.85, in line with what has been described in

Drosophila.100 Finally, to generate a connectivity matrix in which each neuron had the desired amount of incoming and outgoing con-

nections, we used the directed_havel_hakimi_graph function from the networkx python package.

Size of synapses

The distribution of synaptic sizes was simulated according to a normal (mean =
ffiffiffi
e2

p
, std = 1/2) or log-normal (mean of the underlying

normal = 0, std of the underlying normal = 1) distribution. Please note that it can be analytically shown that the two distributions have

the same mean. These distributions were then scaled by different scalars (see Table S1) according to the specifics of the connected

populations.

Synaptic plasticity

For simulations with synaptic plasticity, synaptic parameters were set to their extreme configuration (lognormal distribution of syn-

aptic weights and number, and correlated amount of incoming and outgoing number of synapses). A set of other parameters con-

trolling the structural network architecture was systematically varied across a biologically-constrained range, analogously to simu-

lations without synaptic plasticity (seeRandom variables). In these networks, we first simulated 10s with frozen synaptic weights, and

40s with synaptic plasticity.
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PYR-PYR excitatory synapses were plastic according to a classic asymmetric Hebbian plasticity rule63 that can be summarized as

follows:

dW

dt
=

hðpre � postÞ
tSTDP

(Equation 9)

WhereW is a PYR-PYR synaptic weight, pre and post are the pre- and postsynaptic activity, h is the learning rate, and tSTDP is the

decay time constant of the plasticity rule.

In practice, synaptic weights from a pre-synaptic neuron i to a post-synaptic neuron j (Wij) were updated at every pre- and post-

synaptic event occurring at time ti and tj such that:

Wij/Wij + hxj for presynaptic spikes at time ti (Equation 10)

Wij/Wij + hxi for postsynaptic spikes at time tj (Equation 11)

Where xi and xj are the pre- and post-synaptic trace.

xi was updated with each spike xi/xi + 0:01 and decayed according to:

dxi
dt

= � xi
tSTDP

(Equation 12)

xj was updated with each spike xj/xj � 0:01 and decayed according to:

dxj
dt

= � xj
tSTDP

(Equation 13)

Synaptic weights were clipped within the 0–10 range.

IN-PYR inhibitory synapses were plastic according to a symmetric plasticity rule.62 This rule can be summarized as follows:

dW

dt
=

hðpre � post � a � preÞ
tSTDP

(Equation 14)

Where W is an IN-PYR synaptic weight, pre and post are the pre- and postsynaptic activity, a is the target rate for the postsynaptic

PYR, drawn from a log-normal distribution, h is the learning rate, and tSTDP is the decay time constant of the plasticity rule.

Synaptic weights Wij were updated at every pre- and post-synaptic event occurring at time tj and ti such that:

Wij/Wij + hðxi � aÞ for presynaptic spikes at time tj (Equation 15)

Wij/Wij + hxj for postsynaptic spikes at time ti (Equation 16)

Where xi and xj are the pre- and post-synaptic trace that increased with each spike x x x/x + 1 and decayed according to:

dx

dt
= � x

tSTDP
(Equation 17)

Synaptic weights were clipped within the 0–100 range.

Simulated SUA statistics and quality of model fit

For each network, we extracted the simulated spike times and computed the same 7 parameters as for the experimental data

(described in SUA firing statistics and shape distribution parameters): skewness, kurtosis and Gini coefficient of firing rate and

STTC, and the correlation between the log-transformed firing rate and STTC. To compute the quality of the model fit, we extracted

the median of these 7 parameters from the P4-12 PFC dataset. For each simulation, we then computed the Euclidian distance

(MATLAB function pdist) between the median of the experimental data and the 7D coordinates of that specific simulation. To ensure

that each metric contributed equally to the distance from the experimental data, kurtosis and skewness of firing rate and STTC were

divided by their maximum value. This normalized them to a range comprised between 0 and 1, as the Gini coefficient.

Statistical modeling
Statistical modeling was carried out in the R environment. All the scripts and the processed data on which the analysis is based are

available on the following github repository: https://zenodo.org/doi/10.5281/zenodo.11091323.

Nested data (Figures 1, 4, and 6) were analyzed with (generalized) linear mixed-effects models (lmer and glmer functions of the

lme4 R package111) with ‘‘mouse’’ as random effect. Non-nested data were analyzed with linear models (lm function). Regression

on data that was better fit by an exponential curve (Figure 1) was carried out with a generalized linear mixed-effect models with

the following parameters: family = Gamma, link = log. For ease of interpretability and consistency with the other distribution shape

parameters, kurtosis of firing rate and STTC, which followed an approximately log-normal distribution, was instead log-transformed

and analyzed with a linear model.
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Statistical significance for linear mixed-effects models was computed with the lmerTest R package112 and the summary (type III

sums of squares) R function. Statistical significance for linear models was computed with the summary R function.

When possible, model selection was performed according to experimental design. When this was not possible, models were

compared using the compare_performance function of the performance R package,113 and model choice was based on an holistic

comparison of AIC, BIC, RMSE and R2.

Model output was plotted with the plot_model (type = ’pred’) function of the sjPlot R package.114 95% C.I. were computed using

the confint R function.

Post hoc analysis was carried out using the emmeans and emtrends functions of the emmeans R package.115
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