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Abstract

Intrinsic neural timescales (ITs) are an emerging measure of how neural circuits integrate information
over time. ITs are dynamically regulated by behavioral context and cognitive demands, making them
suitable for mapping high-level cognitive phenomena onto the underlying neural computations. In par-
ticular, I'T measurements derived from single-unit activity (SUA) offer fine-grained resolution, critical for
mechanistically linking individual neuron dynamics to cognition. However, current methods for estimat-
ing ITs from SUA suffer significant biases and instabilities, particularly when applied to sparse, noisy,
or epoched neural spike data. Here, we introduce the intrinsic Spike Time Tiling Coefficient (iISTTC), a
novel metric specifically developed to address these limitations. Leveraging synthetic and experimental
single-unit recordings, we systematically assessed the performance of iSTTC relative to traditional ap-
proaches. Our findings demonstrate that iSTTC provides more accurate estimates of neural timescales
across a wide range of conditions, reducing estimation error especially under challenging yet biologically
relevant conditions. Crucially, iSTTC can be applied to both continuous and epoched data, overcoming
a critical limitation of existing methods. Furthermore, iSTTC substantially relaxes inclusion criteria,
increasing the fraction of neurons suitable for analysis and thereby improving the representativeness and
robustness of IT measurements. The methodological advances introduced by iSTTC represent a substan-
tial step forward in accurately capturing neural circuit dynamics, ultimately enhancing our ability to link
neural mechanisms to cognitive phenomena.


https://doi.org/10.1101/2025.08.01.668071
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.08.01.668071; this version posted August 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1 Introduction

A remarkable ability of our brains is that of being capable of choosing an appropriate course of action
over extremely different timescales: from a rapid millisecond-range reaction to avoid an unforeseen ob-
stacle while driving a car, to choosing the next move in a complex chess match, which might unfold over
several minutes. Intrinsic neural timescales (ITs) are an emerging fundamental measure quantifying how
different systems integrate information over time [1, 2]. ITs are defined as the decay rate of the auto-
correlation of neural signals, and vary significantly across the brain [1]. This is thought of reflecting the
computational properties of different brain regions. Within the neocortex, regions that sit at the bottom
of the cortical hierarchy, such as primary sensory cortices, typically exhibit short timescales, conducive
to rapid sensory processing. Higher-order brain areas, such as the prefrontal cortex, display substantially
longer timescales, better suited to supporting more complex cognitive functions |1, 3]. Remarkably, these
findings have been robustly replicated across phylogenetically distant species and disparate recording
techniques, including single-unit activity (SUA), 2-photon and widefield calcium imaging, local field po-
tentials (LFP), electrocorticography (ECoG), electro- and magneto-encephalography (EEG and MEG),
and functional magnetic resonance imaging (fMRI) [2, |4} 5, 3, (6, |7} [8L 9} [10L {11} {12} |13} [14].

While few experimental studies have mechanistically investigated the factors that underlie this IT het-
erogeneity, early indications point to several single-neuron and network-level factors as being potentially
implicated [3, |15, |16, |17 |18]. For instance, higher proportions of somatostatin-expressing interneurons
and prolonged NMDA currents positively correlate with longer ITs, whereas parvalbumin-expressing in-
terneurons generally contribute to shorter ITs [3], |16]. Importantly, ITs are not fixed but dynamically
modulated by behavioral context, cognitive demands, and task engagement [10, |3, 6 9} [19]. Another
important property of ITs lies in their predictive power for behavioral and cognitive performance. For
example, shorter ITs correlate with faster reaction times [20]. This suggests that modulation of ITs
could be a mechanism by which neural circuits dynamically adjust computational resources to behavioral
needs. Thus, a detailed understanding of the mechanisms regulating ITs might represent a promising
approach to bridge neural dynamics with higher-order cognitive functions, and could even serve as mech-
anistic biomarkers in clinical contexts [21}, |22} [23]. To this aim, recording modalities that bridge single
neuron and network levels of investigations, such as SUA and 2-photon calcium imaging, are particularly
promising for advancing our mechanistic understanding of IT's.

Despite their potential importance, current methods for estimating ITs from SUA exhibit substantial
limitations [24]. Typically, IT estimation involves a two-step process: first calculating an autocorrelation
(or autocorrelation-like) function (ACF, but see below), and subsequently fitting an exponential decay
function [24]. Of note, in this paper we reserve the use of ” ACF” for the classically defined autocorrelation
function. Any alternative preprocessing, smoothing, or surrogate-based approximations are referred to
as 7 ACF-like” methods. Recent methodological improvements have primarily focused on optimizing the
exponential fitting step, with approaches such as adaptive Approximate Bayesian Computation (aABC)
substantially reducing bias and improving robustness [25]. However, significant uncertainty remains in
the initial process of estimating the ACF itself. This is a critical step whose results are influenced by
multiple factors, including sensitivity to data length [26], the SUA firing rate, the eventual presence of
trials, the representation of the spiking data as binary or continuous, the choice of bin width or smoothing
kernel, and other preprocessing choices. Furthermore, most existing trial-based methods impose strict
inclusion criteria, thus restricting analysis to a minority of recorded neurons |1} 27} |7, |28] 29, [30]. This
runs counterintuitive to the notion that ITs are based on the decay rate of all neurons in a certain
brain area. Additionally, given that the ACF cannot be readily estimated on epoched, non-continuous
data, the most commonly used approach for trial-based IT estimation (referred to as PearsonR in this
manuscript, see Materials and Methods for details) does not calculate the genuine ACF, but instead
measures pseudo-autocorrelations on trial-averaged data [1].

To address these limitations, we introduce a novel metric: the intrinsic Spike Time Tiling Coeflicient
(iSTTC). iSTTC, an extension of STTC [31], robustly estimates ITs and offers significant improvements
over traditional ACF-based approaches. It provides more accurate IT estimates on long, uninterrupted
spiking data, particularly under biologically realistic cortical conditions, characterized by low firing rates
and high recurrent connectivity. Unlike traditional ACF methods, iSTTC is unaffected by zero-padding,
and thus also seamlessly generalizes to epoched spiking data after 0-padding and concatenation. In sim-
ulated trial-based data, iSTTC consistently outperforms the PearsonR method, producing more accurate
estimates of the true underlying timescales, particularly if the number of trials is low. Lastly, iSTTC re-
laxes the stringent inclusion criteria required by other commonly used trial-based methods, thus enabling
IT estimation in a substantially larger fraction of neurons. This broader applicability enhances both the
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statistical power and representativeness of the estimated ITs.

In summary, iSTTC is a robust, accurate, and broadly applicable tool for IT estimation from SUA
signals. By improving the reliability of IT measurements, iSTTC advances our ability to link intrinsic
neural dynamics to functional and behavioral outcomes, strengthening I'Ts’ potential role as mechanistic
biomarkers for cognitive processing.
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2 Results

2.1 iSTTC calculates an autocorrelation-like function on non-binned spike

trains

ITs are defined as the decay time constant of the signal’s autocorrelation function (Figure ) Estimation
of ITs is a two-step process (Figure ): first, computing the ACF (or ACF-like), and second, estimating
its decay time constant. Methods for estimating decay time constant based on the ACF/ACF-like can
be broadly categorized into model-free and model-based approaches [24]. In this paper we focus on
optimizing the first step (the calculation of the ACF/ACF-like) and use a model-based approach that
assumes that the ACF/ACF-like follows an exponential decay (Figure [I]C).

The calculation of the ACF/ACF-like, although seemingly straightforward, can be influenced by
several arbitrary choices. First, the time series used to estimate the ITs can differ in structure: they may
consist of long continuous spike trains [32] or a set of shorter trials, typically taken from baseline or fixation
periods within behavioral tasks when the subject is not actively engaged |1, 27]. Second, spiking data
can be represented either as binary spike times or as continuous signals obtained by binning or smoothing
the spike train, which influences the method used to calculate the ACF/ACF-like. Both the structure of
the data and the signal representation can introduce variability in the resulting ACF/ACF-like and, by
extension, in the IT estimates.

To investigate the effects of these factors, we estimated ITs on a large synthetic dataset and an
experimental one (Table [1).

Synthetic SUA

Mouse single unit activity

Reference

Datasets were generated in this
study

12

Dataset source

gin.g-node.org/iinnpp/isttc

Openly available for download in
Neurodata Without Borders format
via the AllenSDK

Dataset info

10° single units with varying spike
train features (firing rate, intrinsic
timescale and burstiness)

5775 single units, 26 mice, 8 brain
areas, 30 min long spike trains and
trials

Related figures

Figure 2, Figure 3, Figure 4, Figure
5

Figure 6

Investigated biases

Trial number, signal length, contin-
uous vs epoched data, firing rate, IT

Trial number, signal length, contin-
uous vs epoched data

magnitude, excitation strength

Table 1: Summary of used datasets.

To calculate the ACF/ACF-like, we used three different methods (Table [2). Two of these are com-
monly used in the literature: i) the classic ACF for continuous signals; ii) the Pearson’s correlation
coefficient on averaged signal (PearsonR) for epoched data. We compared these methods to iSTTC, the
measure that we introduce in this manuscript (Supp. Figure —B). iSTTC can be used as an ACF-like
measure for both continuous and epoched data.

Binary signal Binned spike
(spike times) train
Continuous signal iSTTC ACF
Trials iISTTC (trials) PearsonR

Table 2: Summary of used methods.

To compute an ACF-like of continuous signals using iSTTC, we generate lagged versions of the spike
train by shifting it in time. For each lag t, we truncate the shifted train A by removing spikes occurring
before ¢, and truncate the unshifted train B by removing spikes occurring at or beyond the signal length
minus ¢. This alignment ensures both spike trains remain of equal length. We then compute the classic
STTC between these two aligned trains, producing an ACF-like across lags (e.g., 50 ms, 100 ms, etc.)
(Supp. Figure[1B) (see Materials and Methods for details).
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For epoched data, before applying iSTTC, we linearize the signal by concatenating the epoched data,
with zero-padded intervals inserted between trials. The ACF-like is then computed in the same way as
for continuous spike data. By design, zero padding does not affect the iSTTC value (see Materials and
Methods for details).
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Figure 1: Definition and schematic representation of intrinsic timescale estimation. (A)
Schematic illustration of an intrinsic timescale, defined as the decay time constant of the spike train ACF.
(B) Schematic of the intrinsic timescale estimation pipeline for single-unit activity. (C) Representative
examples of spike trains with known and increasing from top to bottom intrinsic timescales (left) and
their corresponding estimated intrinsic timescales (right). In (C), blue dots represent the computed ACF,
and the black line indicates the fitted exponential decay function.

2.2 iSTTC outperforms ACF in IT estimation accuracy on continuous spiking
data

To compare the performance of iSTTC and ACF in estimating ITs on long, continuous spiking data, we
used a self-exciting Hawkes point process to simulate 10 spike trains of 10 minutes each (Figure ,
left). The spike trains varied systematically in time constant of the Hawkes point process (i.e. the IT
to estimate; from 50 to 300 ms), firing rate (from 0.01 to 10 Hz), and excitation strength (from 0.1 to
0.9; see Materials and Methods for details). Each parameter was uniformly sampled within the specified
range (Figure 7 right). To compare the IT estimation accuracy of the two methods, for each iteration
we computed the Relative Estimation Error (REE), defined as REE = LIyt 100, where IT, is the

TTy:
estimated IT and ITy, is the ground truth IT (Figure 2B). \

Across the overwhelming majority of the explored parameter space, iSTTC yielded lower REEs than
ACF (Figure ) To rigorously quantify this difference, we modeled how the IT estimation method
impacted REEs with a multivariate generalized linear model. Across the entirety of the synthetic dataset,
we found a robust effect of IT estimation method (coefficient estimate = ~0.037, 95% CI [-0.039, -0.034],
p < 10716; Supp. Figure ), indicating that the REE of iSTTC was, on average, ~8% lower than
that of ACF. This difference was not uniform throughout the parameter space (Figure ) Accordingly,
statistical modeling revealed that the effect of IT estimation method significantly interacted with firing
rate (coefficient estimate = 0.003, 95% CI [0.0007, 0.0061], p = 0.0124; Figure , left; Supp. Figure
2A), excitation strength (coefficient estimate = -0.037, 95% CI [-0.039, -0.034], p < 10~'6; Figure 2D,
middle; Supp. Figure 2JA) and the value of the IT (coefficient estimate = 0.005, 95% CI [0.003, 0.009], p
< 107%; Figure , right; Supp. Figure ) Thus, estimating ITs with iSTTC resulted in lower REEs
than ACF, an advantage that was particularly evident in low-firing rate, high excitation strength and
low IT values regimes (Figure [2C-D).

While firing rate and I'T are parameters that can be evaluated also in experimental datasets, excitation
strength is not. Thus, we set out to investigate whether we could identify an experimentally-observable
proxy for excitation strength, and reasoned that it might be reflected in the burstiness of the spike trains.
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To this aim, we quantified the local variation (Lv) [33], a measure of the regularity of the temporal
spiking dynamics (Supp. Figure ) This coefficient takes values of 1 if the unit has random spiking
dynamics; below 1 if the unit has regular spiking (i.e. oscillatory); and above 1 if the unit is bursty
(Supp. Figure ) In line with our intuition, the Lv very tightly correlated with excitation strength
(coefficient estimate = 0.436, 95% CI [0.434, 0.439], p < 107'6; Supp. Figure 2IC, 2D, left) and thus
also significantly interacted with the IT estimation method effect on REE (coefficient estimate = -0.042,
95% CI [-0.046, -0.039], p < 10716; Supp. Figure , right). Perhaps more importantly, this analysis
revealed that the regimes in which ACF is a better IT estimator than iSTTC are regimes in which Lv
< 1 (crossover point = 1.099), the units are regular-spiking (Supp. Figure , right), and thus do not
display the exponentially decaying autocorrelation that is a prerequisite to compute an IT.

Taken together, this data demonstrates that, on continuous spiking data, iSTTC is a better IT
estimator than ACF, particularly in regimes that resemble neocortical brain activity, and are characterized
by low and bursty firing.
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Figure 2: iSTTC is a better IT estimator than ACF on continuous data, particularly for
low-firing rate and bursty units. (A) Schematic illustration of the synthetic dataset generation
(left), and the underlying parameters with corresponding representative spike train examples (right).
(B) Definition of the relative estimation error (REE) metric. (C) Hexbin plot displaying the difference
in REE between iSTTC and ACF method as a function of firing rate and excitation strength (left), and
IT and excitation strength (right) (n = 10° single units). Color codes for the median REE difference
in each bin, with blue indicating better IT estimation for iSTTC. (D) Line plot displaying predicted
REE values for iSTTC and ACF as a function of firing rate (left), excitation strength (middle), and IT
(right) (n = 10 single units). Shaded areas represent 95% confidence intervals. Y-axes are plotted on a
logo scale. In (C), asterisks indicate a significant effect of the IT estimation method. In (D), asterisks
indicate a significant effect of an interaction between method and firing rate (left), method and excitation
strength (middle), and method and IT (right). * p < 0.05., *** p < 0.001. Generalized linear model with
interactions (C), (D).
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2.3 iSTTC outperforms PearsonR in IT estimation accuracy on epoched spik-
ing data

A key advantage of iISTTC over ACF is that the former is insensitive to 0-padding. Consequently, if
the data on which IT estimation is based is epoched, as commonly observed in much of the current
IT literature [1} (34} |7, |5} 27], iSTTC can still be readily employed after 0-padding and concatenating
the epoched spiking data. Given that ACF cannot be used on epoched data, we compared iSTTC to
the PearsonR approach that is commonly used in the literature [1, 34} [27]. To this aim, we used the
same dataset of 10° spike trains that we previously described. We extracted pseudo trials by randomly
sampling 40 1s long chunks of spiking data (Figure ) The choice of trial number and length was based
on values commonly used in the literature |1} 27,|34} |7]. Similarly to our approach in the previous section,
we compared the IT estimation accuracy of the two methods by computing the REE for each iteration,
and modeled the results with a generalized linear model.

Across the overwhelming majority of the explored parameter space, iSTTC yielded lower REEs than
ACF (coefficient estimate = -0.083, 95% CI [-0.090, -0.077], p < 1071%; Figure , Supp. Figure ) On
average, iISTTC estimates were 17.5% better than PearsonR (Supp. Figure ) This difference was not
uniform throughout the parameter space (Figure ) Accordingly, the effect of IT estimation method
significantly interacted with firing rate (coefficient estimate = -0.008, 95% CI [-0.014, -0.001], p = 0.02124;
Figure , left; Supp. Figure ), excitation strength (coefficient estimate = 0.009, 95% CI [0.002, 0.016],
p = 0.00985; Figure 7 middle; Supp. Figure ) and the value of the IT (coefficient estimate = -0.015,
95% CI [-0.023, -0.009], p < 10~%; Figure , right; Supp. Figure ) Thus, estimating ITs with iSTTC
results in lower REEs than PearsonR, an advantage that is particularly evident in high firing rate, low
excitation strength and high IT values regimes (Figure —C; Supp. Figure ) Notably, the magnitude
of these interaction effects was much more modest than in the continuous spiking dataset (compare Supp.
Figure and Supp. Figure ) Perhaps most importantly, it is noteworthy that, regardless of the IT
estimator that was employed, the REEs obtained from epoched data are roughly one order of magnitude
larger than those obtained from continuous spiking data.

Taken together, this data indicates that, after 0-padding and trial concatenation, iSTTC outperforms
PearsonR in estimating IT on epoched data. Moreover, the large REEs obtained from epoched data
warrant some precaution in interpreting I'T estimates obtained through this approach.
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Figure 3: iSTTC provides better IT estimates from epoched spiking activity. (A) Schematic
illustration of the generation of epoched data based on randomly sampled continuous spike trains. (B)
Hexbin plot displaying the difference in REE between iSTTC and PearsonR as a function of firing rate
and excitation strength (left), and IT and excitation strength (right) (n = 10° single units, 40 trials x
1000 ms each). Color codes for the median REE difference in each bin, with blue indicating lower error
for iSTTC. (C) Line plot displaying predicted REE values for iSTTC and PearsonR as a function of
firing rate (left), excitation strength (middle), and IT (right) (n = 10° single units, 40 trials x 1000 ms
each). Shaded areas represent 95% confidence intervals. Y-axes are plotted on a logio scale. In (B),
asterisks indicate a significant effect of the method. In (C), asterisks indicate a significant effect of an
interaction between method and firing rate (left), method and excitation strength (middle), and method
and IT (right). * p < 0.05., ** p < 0.01., *** p < 0.001. Generalized linear model with interactions (B),

(C).

2.4 Epoched spiking data leads to vastly larger REEs than continuous spiking
data

Inspired by the large difference on REEs between continuous and epoched data, we decided to system-
atically investigate how the accuracy of IT estimations depends on the amount and type of data that
it is based upon. We first compared the REE obtained from the same spiking units in the continuous
and epoched condition. To create the epoched dataset, we generated pseudo-trials by randomly selecting
40 1s segments of spiking activity for each unit. We confirmed our prior results about epoched data
resulting in vastly larger REEs (Figure , left). Irrespective of the IT estimation method, the epoched
spiking data yielded a ~20% decrease of IT estimates with an REE below 100%, and a ~60% decrease
of estimates with an REEs below 50% (Figure 4A, middle). In the aggregate, REEs from epoched data
were an order of magnitude larger than continuous data (Figure , right). Additionally, this analysis
confirmed that iSTTC outperforms ACF and PearsonR on continuous and epoched data, respectively
(Figure ) However, the advantage conferred by iSTTC over PearsonR is of limited magnitude when
compared to the increase of REE due to epoched spiking data.

To further explore how the amount of data affects the REE of different methods, we systematically
explored the effect of varying the amount of continuous (from 60s to 10 minutes) data and the number
of trials (from 40 to 100 trials) on which we estimated ITs.

Increasing the amount of continuous spiking data led to a log-linear reduction in the REE of iSTTC
and ACF alike (Figure ) Across the entirety of the parameter space, iISTTC outperformed ACF by
an average of ~7% (coefficient estimate = -0.031, 95% CI [-0.033, -0.029], p < 10~!; Supp. Figure
) and consistently displayed a higher proportion of IT estimates within various ranges of the actual
IT value (Figure [4IC). The effect of IT estimation method interacted with the spike train length, firing
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rate, excitation strength and the IT value (signal length: coefficient estimate = -0.005, 95% CI [-0.152,
-0.150], p < 10~ L; firing rate: coefficient estimate = 0.002, 95% CI [0.0003, 0.0034], p = 0.017; excitation
strength: coefficient estimate = -0.028, 95% CI [-0.030, -0.027], p < 107!¢; IT: coefficient estimate =
0.003, 95% CI [0.001, 0.004], p < 0.001; Supp. Figure ) This indicates that iSTTC outperform ACF
particularly in long spiking datasets with low IT values and high excitation strength, and on units with
low firing rates (Figure —C, right).

In line with these results, increasing the number of trials also strongly and log-linearly reduced the
REE of iSTTC and PearsonR alike (Figure ; Supp. Figure ) Across the entirety of the parameter
space, iISTTC outperformed PearsonR by an average of ~14% (coefficient estimate = -0.062, 95% CI
[-0.068, -0.057], p < 107'6; Supp. Figure [4B) and consistently displayed a higher proportion of IT
estimates within various ranges of the actual IT value (Figure ) The effect of IT estimation method
interacted with the number of trials and the IT value (number of trials: coefficient estimate = 0.0098,
95% CI [0.005, 0.015], p < 10716; IT: coefficient estimate = -0.015, 95% CI [-0.020, -0.01], p < 10716;
Supp. Figure [4B), indicating that it is particularly prominent at low trial number counts and high IT
values (Figure—E, right).

Lastly, iSTTC also converged faster than PearsonR to a stable IT estimate (Supp. Figure 4C-D).
To quantify this, we resampled the same number of trials a varying number of times (50 to 1000), and
assessed the consistency of the estimates. A larger fraction of iSTTC-derived IT values fell within various
fixed ranges around the median, indicating greater stability (Supp. Fig. ) In addition, iSTTC showed
a lower standard error of the median across all resampling iterations (Supp. Fig. )

In summary, iSTTC consistently provides more accurate and stable IT estimates than traditional
methods across varying data conditions, in particular for datasets with a low number of trials.
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Figure 4: Relative estimation errors are higher for epoched than continuous spiking data.
(A) Comparison of IT estimation accuracy across four methods. Ridgeline plot displaying the distribution
of REE. Only spike trains with REE between 0% and 100% are shown. Percentages indicate the proportion
of spike trains within this interval for each method (left). Scatter plot displaying the percentage of spike
trains with REE falling within progressively narrower intervals (middle). Violin plot displaying the full
distribution of REE values for each method. (right). (B) Line plot displaying predicted REE values for
ACF and iSTTC as a function of signal length (n = 10° single units per signal length). Shaded areas
represent 95% confidence intervals. Y-axes are plotted on a logig scale. (C) Heatmap displaying the
percentage of spike trains with REE within specific intervals for ACF (left) and iSTTC (middle) across
varying signal lengths. Color codes for the proportion of spike trains, with warmer colors indicating higher
percentages of spike trains. (Right) Heatmap displaying the difference in performance between methods,
computed as the difference between ACF and iSTTC. Negative values indicate better performance (lower
REE) for iSTTC. Color codes for the magnitude of the difference in percentages. (D) Same as (B) for
PearsonR and iSTTC. (E) Same as (C) for PearsonR and iSTTC. In (A) right, data is presented as
median, 25th, 75th percentile, and interquartile range, with the shaded area representing the probability
density distribution of the variable. In (B), asterisks indicate a significant effect of interaction between
method and signal length. In (D), asterisks indicate a significant effect of an interaction between method
and the number of trials. *** p < 0.001. Generalized linear model with interactions (B), (D).

2.5 iSTTC improves inclusion rates and fit quality on epoched spiking activ-
ity

Current studies on I'Ts generally impose strict inclusion criteria that limit the analysis to a small percent-

age of recorded neurons. These criteria commonly include a minimal firing rate of 1 Hz, an absence of

empty bins in the averaged binned spiking data, a minimal number of trials in epoched data, a declining
ACF/ACF-like in a specific time window, an R-squared value > 0.5, and manual inspection of fit quality.
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[1L 127, |7, 28] |29L [30]. Thus, we set out to investigate whether iSTTC allows the use of a larger proportion
of single units for IT estimation, thereby increasing the representativeness and robustness of the measure.
We quantified the proportion of rejected units due to a failed or negative R-squared fit, which indicates
that the model performs worse than predicting the mean of the data. While IT estimations on continuous
data led to a minimal proportion of rejected units (~0.25%), this proportion increased significantly when
using the PearsonR method (~16.6%) and, to a much less extent, when using iSTTC on epoched data
(~6.3%) (Figure ) The advantage conferred by iSTTC over PearsonR was not uniform throughout the
simulation parameters. Rather, the usage of iSTTC reduced the failed fits particularly at low firing rates,
high levels of excitation strength and low IT values (Figure )

To further assess whether commonly used quality criteria are valid indicators of estimation accuracy,
we took advantage of the REE, which quantifies deviation from the IT ground truth value. We assessed
the impact on REE of three quality parameters: the presence of an ACF/ACF-like decline in the 50 to 200
ms range, the R-squared value, and whether the 95% confidence interval of the IT estimate excludes zero.
We found that each parameter was significantly predictive for REE (ACF/ACF-like decline: coefficient
estimate = -0.946, 95% CI [-0.954, -0.937], p < 1071%; 95% CI excludes 0: coefficient estimate = -1.325,
95% CI [-1.332, -1.318], p < 10716; R-squared: coefficient estimate = -1.613, 95% CI [-1.624, -1.602],
p < 10716, Figure ), suggesting that they are valid proxies of IT estimation quality. Importantly,
since REE cannot be computed on experimental data where the ground truth is unknown, these results
support their use to increase the reliability of IT estimates in practice.

Next, we compared how the proportion of units meeting each quality criterion varied across meth-
ods. Nearly all units showed an ACF/ACF-like decline in the 50 to 200 ms range in continuous data
(~88%). This proportion dropped substantially in epoched data: 53.4% of units passed the criterion using
PearsonR and 61.4% using iSTTC. Thus, iSTTC retained approximately ~8% more units than PearsonR
(Figure , left). A similar pattern was observed for the proportion of units whose IT estimate had a 95%
CI that excluded zero. Here, ~92% of units met this criterion in continuous data, but only by 30.4% with
PearsonR and 38% with iSTTC in epoched data, again highlighting an improvement of ~7.6% for iSTTC
(Figure , right). Finally, this trend persisted with the R-squared criterion: ~96% of units passed in
continious data, compared to 43.9% with PearsonR and 51.6% with iSTTC in epoched data. Once more,
iSTTC retained ~ 7.7% more units than PearsonR (Figure )

To further examine how the amount of data influences the number of included units, we quantified
the proportion of units meeting each quality criterion, as well as the proportion of excluded units, across
increasing signal lengths and trial counts. In continuous data, both ACF and iSTTC showed high pass
rates across all quality metrics, but iSTTC consistently resulted in fewer excluded units, particularly at
shorter signal length (Supp. Fig. ) In epoched data, the difference between methods became more
pronounced. Across all trial counts, iISTTC retained a higher percentage of units compared to PearsonR
for each quality criterion and showed a lower percentage of excluded units (Supp. Fig. ) These
results highlight that iSTTC is especially advantageous under challenging data conditions, such as short
recordings or low trial numbers, where traditional methods are more likely to fail.

Taken together, these findings indicate that iSTTC allows a larger proportion of units to meet com-
monly used quality criteria, thereby increasing the yield and representativeness of IT estimates.
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Figure 5: iSTTC allows inclusion of more units than PearsonR. (A) Bar plot displaying the
percentage of excluded units across four methods. Color codes indicate exclusion reasons, with dark
grey for failed exponential fits and light grey for negative R-squared values of the exponential fit (n =
23348 excluded fits across four methods, n = 248 excluded fits ACF, n = 238 excluded fits iSTTC, n =
16594 exluded fits PearsonR, n = 6268 excluded fits iSTTC (trials)). (B) Kernel density plot displaying
the distribution of excluded units as a function of firing rate (left), excitation strength (middle), and
IT (right) (n = 4469 units both methods failed, n = 12125 units only PersonR, n = 1799 units only
iSTTC). (C) Violin plot displaying REE values for exponential fits where the autocorrelation function
declined (vs. not declined) in the 50-200 ms range (left), and for fits where the 95% confidence interval
of the estimated IT included vs. excluded zero (middle) (n = 376652 fits across four methods). Line
plot displaying predicted REE values as a function of R-squared (right) (n = 376652 fits across four
methods). Shaded areas represent 95% confidence intervals. Y-axes are plotted on a logig scale. (D)
Bar plots displaying the percentage of units with autocorrelation function decline in the 50-200 ms range
(left, n = 291395 fits across four methods), and the percentage of units with 95% confidence intervals
excluding zero (right, n = 253595 fits across four methods), across four methods. (E) Kernel density
plot displaying the distribution of R-squared values (left), and bar plot displaying the percentage of units
with R-squared > 0.5 across four methods (right, n = 287967 fits across four methods). In (C), left and
middle, data are presented as median, 25th, 75th percentile, and interquartile range, with the shaded area
representing the probability density distribution of the variable. In (C), asterisks indicate a significant
effect of the factor on REE. *** p < 0.001. Generalized linear models (C).

2.6 iSTTC outperforms traditional methods also on an experimental dataset

To assess the performance of iISTTC on continuous and epoched experimental data, we analyzed a subset
of the Visual Coding Neuropixels dataset [35], [2]. The dataset comprised 5,775 single units from 26 mice
(Figure |§|A7 Supp. Figure |§|A) Recordings were obtained from six cortical areas: primary visual cortex
(V1), lateromedial area (LM), anterolateral area (AL), rostrolateral area (RL), anteromedial area (AM),
and posteromedial area (PM), and two thalamic areas: the lateral geniculate nucleus (LGN) and the
lateral posterior nucleus (LP). To estimate baseline ITs, we used data from the Functional Connectivity
sessions, which included 30 minutes of spontaneous activity during gray screen presentation. We then
artificially created trials by randomly selecting 40 1s-long segments from each 30-minute spike train,
following the same approach used in the synthetic dataset. Firing rates ranged from 0.06 to 69.7 Hz
(median: 3.9 Hz), and local variance from 0.14 to 2.16 (median: 0.86) (Figure []A, Supp. Figure [6A).
We estimated ITs at the brain area level using two continuous-signal methods and two trial-based meth-
ods. Full-signal methods yielded consistent estimates across areas with relatively narrow confidence
intervals and a well-preserved hierarchical ordering of ITs, consistent with previous results [32] (Supp.
Figure —C). Conversely, trial-based methods produced more variable estimates, wider confidence inter-
vals (Supp. Figure ) and inconsistent hierarchical ordering of ITs (Supp. Figure EKJ)

To further assess the stability of trial-based estimates, we repeated the trial sampling procedure 50 times
per unit and recomputed area-level ITs. Resampling led to high variability in the estimates across trial
sets (Figure ; the black dots mark the values from the original sampling iteration used in Supp. Figure
—C). Together, these results highlight how the instability of trial-based methods also in experimental
data can lead to inconsistent results and hierarchical ordering of ITs.

Next, we compared IT estimates at the single-unit level. ACF and iSTTC produced similar results with
no significant differences between them (coefficient estimate = 0.030, 95% CI [-0.023, 0.085], p = 0.264),
whereas trial-based methods differed significantly from ACF (PearsonR: coefficient estimate = 0.655,
95% CI [0.601, 0.709], p < 10716; iSTTC trials: coefficient estimate = 0.624, 95% CI [0.570, 0.678], p
< 107'6; Figure Ep left; Supp. Figure @D) Importantly, when modeling the REEs we found that, on
average, iISTTC yielded REEs that were ~15% smaller than PearsonR, (coefficient estimate = -0.071, 95%
CI [-0.117, -0.024], p = 0.0028; Figure Ep middle; Supp. Figure @E) Along the same lines, iSTTC led
to a larger (~5%) proportion of IT estimates with an REE that was within a range of 100% to 25% of
the IT estimated by iSTTC (Figure [6[C, right).

We next quantified the effect of signal duration and trial number on IT estimated from continuous and
epoched data, respectively. To this aim, we systematically varied the signal length (from 1 to 20 minutes)
and the trial count (from 40 to 100 trials), and computed the REE with respect to the IT estimated
using iSTTC on the full-signal. Similarly to synthetic data, increasing signal length led to a log-linear
decrease in REE. Importantly, iISTTC outperformed ACF across the entirety of the dataset (~7% lower
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REEs, coefficient estimate = -0.031, 95% CI [-0.047, -0.016], p < 10~°; Supp. Figure 7A), an advantage
that was particularly evident on short signals (Figure @D; Supp. Figure ) Further, iSTTC consistently
estimated a larger proportion of IT with an REE that fell within various ranges of the IT estimated on
the full signal (Figure [GE).

On epoched data, increasing the number of trials also led to a log-linear decrease in REE, but no differences
between iISTTC and PearsonR reached statistical significance (coefficient estimate = -0.025, 95% CI |-
0.054, 0.004], p = 0.0894; Figure @F, Supp. Figure ) However, REEs of ITs estimated with iSTTC
consistently fell at a higher proportion within various ranges of the I'T estimated on the full signal (Figure
Ep) Moreover, iSTTC converged faster to an accurate I'T estimation. To quantify this, we resampled the
same dataset 50 to 1000 times with different and randomly selected trials, and assessed the consistency of
the estimates. A larger fraction of iISTTC-derived IT values fell within various ranges around the median,
indicating greater stability (Supp. Fig. 7 left). In addition, iSTTC showed a lower standard error of
the median across resampling iterations (Supp. Fig. )

Lastly, we evaluated whether iSTTC allows to include a larger proportion of units also on experimental
data. To this aim, we quantified the proportion of rejected units and the proportion of units meeting the
same three quality criteria that we used for the synthetic data. In contrast to the synthetic dataset, we
observed a high proportion of excluded units also in continuous data, with minimal differences between
ACF and iSTTC (~21-22%). Similarly to our previous results, this proportion was substantially higher
on epoched data. Also in this case, iISTTC outperformed PearsonR, yielding a rejection rate of 28.3%
compared to 40.6%, a decrease of 12.4% (Supp. Fig. ) When comparing PearsonR and iSTTC on
epoched data, iSTTC allowed to include a larger proportion of units with low firing rates and bursty
firing patterns (Supp. Fig. ) In line with these results, on epoched data, iSTTC also retained a higher
percentage of units passing each quality criterion, including ACF/ACF-like decline in 50 - 200 ms range
(5.3% increase for iISTTC), 95% CI excludes 0 (3.6% increase for iSTTC), and R-squared > 0.5 (4.7%
increase for iSTTC) (Supp. Fig. [§C, D). On continuous data, iSTTC and ACF performed similarly
(Supp. Figure —D). These findings show that, also on epoched experimental data, iISTTC enables the
use of a larger proportion of recorded units.

In conclusion, also on experimental data, iISTTC outperforms ACF and PearsonR IT estimation accu-
racy. Moreover, I'T estimates based on continuous data are more robust and consistent than trial-based
methods.
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Figure 6: iISTTC outperforms ACF and PearsonR in IT estimation accuracy and robustness
also on experimental data. (A) Schematic representation of Neuropixels recordings from the six visual
cortical areas (V1, LM, RL, AL, PM, AM) and the two thalamic areas (LGN and LP), image source ([2])
(left), violin plots displaying the single units firing rate (top right) and local variation (bottom right).
(B) Scatter plots displaying ITs at the brain area level. Black dots indicate area-level ITs used for the
analyses in Supp. Figure 5B and 5C. Grey dots represent individual brain-area IT estimates for the
trial-based methods across different sampling iterations (n = 50 samples). (C) Violin plots displaying
the estimated ITs (n = 3053 single units, only units for which all methods produced an IT estimate are
included) as a function of the estimation method (left). Violin plots displaying REE as a function of
the estimation method (middle). Scatter plot displaying the percentage of spike trains with REE falling
within progressively narrower bounds (right). (D) Line plot displaying predicted REE values for iSTTC
and ACF as a function of signal length (n = 5674 single units per signal length, only units for which
both methods produced an IT estimate for all signal lengths are included). Shaded areas represent 95%
confidence intervals. Y-axes are plotted on a logy scale. (E) Heatmap displaying the percentage of
spike trains with REE within specific intervals for ACF (left) and iSTTC (middle) across varying signal
lengths. Color codes for the proportion of spike trains, with warmer colors indicating higher percentages
of spike trains. (Right) Heatmap displaying the difference between ACF and iSTTC. Negative values
indicate better performance (lower REE) for iSTTC. Color codes for the magnitude of the difference.
(F) Same as (D) for PearsonR and iSTTC (n = 4588 single units per number of trials, only units for
which both methods produced an IT estimate for all numbers of trials are included). (G) Same as (E)
for PearsonR and iSTTC. In (A) and (C) left and middle, data is presented as median, 25th, 75th
percentile, and interquartile range, with the shaded area representing the probability density distribution
of the variable.In (C), asterisks indicate a significant effect of the method. In (C) left, ACF is used as a
reference. In (C) middle, PearsonR is used as a reference. In (D), asterisks indicate a significant effect
of signal length. ** p < 0.01, *** p < 0.001. Generalized linear models with interactions (C), (D), and

(F).
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3 Discussion

In this study we introduce iISTTC, a novel method for accurately estimating ITs from SUA recordings.
We demonstrate the advantages of iISTTC over currently used methods using synthetic and experimental
data. Under a wide variety of conditions, iSTTC provides more accurate and stable IT estimates. Further,
iSTTC accommodates both continuous and epoched data without bias, and generally allows for the
inclusion of a larger number of single units. Together, these properties significantly enhance the accuracy,
representativeness and robustness of IT estimations in neural circuits.

iSTTC is an extension of STTC [31], adapted specifically to address the challenges of IT estimation.
Unlike traditional ACF approaches, iSTTC directly quantifies the autocorrelation-like function on binary
spiking data without binning or smoothing. This reduces the number of arbitrary parameters required
for the analysis. Crucially, iSTTC is also insensitive to 0-padding, and can therefore be seamlessly
applied also to epoched data. When tested on synthetic data, iSTTC recovers ITs more accurately
than other state-of-the-art methods, both on continuous and epoched signals. On continuous data, these
advantages are especially pronounced under biologically realistic conditions, such as sparse firing and
strong recurrent connectivity. Lastly, on epoched data, iSTTC produces a larger amount of ACF-like
estimates that pass commonly used inclusion criteria, significantly expanding the proportion of neurons
suitable for analysis. This increased single-unit inclusivity enhances statistical robustness and ensures
IT estimates that better represent the underlying neural circuit. When investigating a state-of-the-art
experimental dataset, iISTTC required shorter recording durations than traditional ACF methods to
converge to stable solutions. On epoched experimental data, iSTTC remained more robust, converging
more rapidly to estimates closer to those derived from continuous recordings. Further, we confirmed
that substantially more neurons met inclusion criteria under iSTTC then PearsonR, thus producing more
representative estimates of the IT of a given brain area.

An additional key insight from our analysis is the inherent instability in ITs estimated from epoched
data, a common practice in the field. Our analyses on simulated and experimental data demonstrate
that short trial lengths or limited trial numbers drastically reduce the reliability of IT measurements.
Overall, estimating ITs on epoched data with a number and duration of trials that is similar to those
employed in the literature [1}, |27} |7} [34] leads to a roughly ten-fold increase in REEs when compared to IT
estimated on continuous data. This warrants caution in interpreting ITs computed with this approach.
While iSTTC mitigates this instability and improves estimation accuracy, we emphasize the importance
of using either long uninterrupted recordings or, if epoched data is unavoidable, ensuring maximal trial
length and number.

The methodological advances introduced by iSTTC have important implications for future research on
ITs. Reliable estimation of ITs is critical for understating how they are regulated and to link them to
cognitive and behavioral outcomes. Current theoretical frameworks suggest IT variability across brain
areas underpins functional specialization [3]. By enabling more accurate and inclusive measurement of
ITs, iSTTC provides a powerful tool to empirically test these theories across diverse neural systems.
Moreover, given the wide heterogeneity of single-neuron ITs also within brain areas |7} |36} /15, 34], and
the emerging evidence linking IT modulation to single neuron properties |3} 34], we anticipate that a
robust metric which increases the proportion of neurons passing inclusion criteria like iSTTC will be
particularly insightful to deepen our understanding of the principles governing ITs.

In conclusion, iISTTC expands the toolbox for IT estimation, overcomes several shortcomings of the cur-
rent methods, and enhances both accuracy and representativeness of I'T estimations. These improvements
might lead to deeper insights into the mechanisms regulating I'Ts, ultimately bringing us closer to one of
the fundamental goals of neuroscience: mapping behavioral actions onto neural circuits.
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7 Materials and methods

7.1 Datasets
7.1.1 Synthetic dataset

To generate synthetic spike trains with a specific intrinsic time constant, we implemented a univariate
Hawkes point process with an exponential kernel, using Ogata’s thinning algorithm.

Hawkes process is defined to be a self-exciting temporal point process whose conditional intensity function
A(t) is defined as:

At) = p+ > glt—t), (1)

t; <t

where p > 0 is the baseline intensity and g(A), where A = ¢ — ¢t;, is an exponential excitation kernel
defined as:

gA =

) azo. @)

exp | —
Tkernel Tkernel

with o € [0,1) governing the total integrated excitation (ensuring stability) and 7 as the kernel’s time
constant. Hence, explicitly:

At) = p +

exp(— f=t ) . (3)

ti<t Tkernel Tkernel

14

Because o < 1, the process remains subcritical and its long—term rate converges to
For each spike train simulation, we specified four parameters: a target stationary firing rate f (in Hz), a
desired time constant 7 (in ms), an excitation strength o (dimensionless, with o < 1 for process stability),
and a total simulation duration d (in ms).

The kernel time constant was computed as Txernel = 7(1 — ), and the baseline intensity p in units of Hz
was set to u = f(1 — «).

The method is implemented in the simulate_hawkes_thinning function (available at https://github.
com/iinnpp/isttc).

The generated datasets are described in the Table 3]
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Dataset Parameters Dataset file Related figures
Parametric fmin = 0.01 Hz, fp4: = 10 Hz, spike_trains.pkl Figure 2, Figure
dataset alpha,in = 0.1, alpha,,q.. = 0.9, 3, Figure 4A,
taUmin = 50 ms, tatyq, = 300 ms, Figure 5
d = 600 seconds,
number of spike trains = 100000.
Trial generation:
number of trials = 40,
trial duration = 1000 ms.
A total of 100 000 independent parameter
sets were generated by sampling f, tau,
alpha uniformly within the predefined in-
tervals.
Parametric For each spike train in the previously gen- | trials40.pkl, Figure 4B,C
datasets with | erated dataset (600 seconds in duration), | trials60.pkl,
a varying four trial sets were created, each consist- | trials80.pkl,
number of ing of a different number of 1000 ms trials | trials100.pkl
trials (40, 60, 80, and 100 trials).
Parametric For each spike train in the previously gen- | length60.pkl, Figure 4D.E
datasets with | erated dataset (600 seconds in duration), | lengthl150.pkl,
a varying four truncated versions of lengths 60 sec- | length300.pkl,
signal length | onds, 150 seconds, 300 seconds, and 450 | length450.pkl
seconds were generated.

Table 3: Summary of synthetic datasets.

7.1.2 Mouse dataset

We analyzed a subset of the Visual Coding Neuropixels dataset, which is publicly available via the Allen
Brain Observatory |2, 35]. This dataset was previously used by [32] to calculate intrinsic timescales. This
dataset comprises extracellular electrophysiological recordings from mouse brain acquired with Neuropix-
els probes. During the experiments, head-fixed mice were presented with a variety of visual stimuli. The
dataset includes two sets from the two experimental pipelines, Functional Connectivity and Brain Ob-
servatory 1.1, which differ in their stimulus sequences. To compute baseline intrinsic timescales, we used
data from the Functional Connectivity set, which contains a block of around 30 minutes of spontaneous
activity recorded while the animals viewed a gray screen. For the analysis, we trimmed all recordings to
30 minutes. Recordings span six cortical areas (primary visual cortex (V1), lateromedial (LM), antero-
lateral (AL), rostrolateral (RL), anteromedial (AM), and posteromedial (PM)) and two thalamic areas
(lateral geniculate nucleus (LGN) and lateral posterior nucleus (LP)).

For analysis, we only included single units satisfying the following quality criteria (in agreement with
[32):

e presence ratio > 0.9 (presence ratio 0.9 or higher means that the unit was present at least 90% of
the recorded time),

e ISI (interspike interval) violations < 0.5 (ISI violations 0.5 of lower means that contaminating spikes
are occurring at most at roughly half the rate of "true” spikes for the unit),

e amplitude cutoff < 0.01 (amplitude cutoff of 0.01 or lower indicates that at most 1% of spikes are
missing from the unit).

After applying these criteria, 5775 units remained, with a minimum of n = 254 units (LGN) and n = 12
mice (LGN) and a maximum of n = 1063 units (V1) and n = 24 mice (V1 and AM) per brain area.

7.2 Autocorrelation function estimation

We used four methods to compute the autocorrelation function. Two were applied to the full spike train,
the ”classic” autocorrelation (ACF) on binned spike trains and iSTTC on non-binned spike trains. The
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other two were trial-based, using PearsonR on binned spike trains and iSTTC on concatenated non-binned
spike trains.
7.2.1 ”Classic” autocorrelation - ACF
To compute the ACF on binned spiking data, we used the following equation:

N _ _
. Zt:kH(It —Z)(T4—k — T)
= N —

2o (e — 1)?

where r(k) is the autocorrelation at k lag and N is the total number of time points (bins) in the signal.
We used the statsmodels.tsa.stattools.acf function for ACF calculation.

r(k)

: (4)

7.2.2  i(ntrinsic)STTC

To compute the autocorrelation function on non binned spiking data, we used modified version of STTC
(Spike time tilling coefficient) [31]. The STTC is defined as follows:

(PA_TB PB_TA)

1
STTCAt = ~
A 1— PsTg ' 1— PgTq

2

()

where STTC; is a correlation between spike trains A and B on the time lag At; Ty (Tg) is the proportion
of total signal length that lies within At of any spike of A (B); Pa (Pg) is the proportion of spikes
from A (B) that lies within £At¢ of any spike of B (A).

The STTC formula is ill-suited for computing the autocorrelation. By design, STTC centers each time
lag on individual spikes and uses expanding intervals around those spikes rather than a sliding window of
variable size. As a result, applying STTC to the same spike train always yields a correlation of 1, since
each spike coincides with itself.

To use the STTC for autocorrelation, we generated lagged versions of a spike train by shifting the original
signal by a sequence of time lags. For each time lag ¢, for the spike train A, we truncated the original
spike train by removing the spike times < t and for the spike train B truncated the end of the unshifted
spike train by removing spike times >= signal length — t so that both sequences remained the same
length. We then computed STTC between these two aligned truncated spike trains. Thus, a 50 ms shift
yields the first autocorrelation lag, 100 ms the second, and so on. We defined the iSTTC autocorrelation
at k lag as follows:

1STTClag—1 =

1 ( Por —Tvr—k Prp—y —Ther ) (6)
2\1=-PerTir— 1—PrriTer

The iSTTC requires three parameters: the number of lags ny.gs, which specifies the total number of time
lags over which the ACF is estimated; lag_shift, which defines the increment between successive lags; and
At, within which the iISTTC evaluates spike train pair correlations. The method is implemented in the
acf_sttc function (available at https://github.com/iinnpp/isttc).

7.2.3 PearsonR trial average

We implemented the trial average autocorrelation of spike counts (binned spike trains) using Pearson’s
correlation coefficient as previously described |1 [27, |7} [28 2].

The PearsonR trial average method requires as a parameter the number of lags 11,45, Which specifies the
total number of time lags over which the ACF is estimated. An additional parameter is the bin size,
which is used to bin the spike trains before applying PearsonR. The method is implemented in the
acf _pearsonr_trial_avg function (available at https://github.com/iinnpp/isttc).

Given a set of binned spiking data from multiple trials, represented as:

X ={X1,Xa,..., X7}, X;€RY, (7)
where X; is the binned spikes time series data for trial ¢, and N is the number of time bins, the ACF for

the first njage time lags was computed as follows:

Step 1: Extract relevant time series We define a subset of the time series that includes the first
Nlags time bins across trials:
X" = X1[:,0 : Nyags), (8)

where X’ is a matrix of size T' x Nlags, With T trials and nj,es time bins.
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Step 2: Compute Pearson correlation for each lag For each pair of time points 4 and j, where
j > i, the Pearson correlation coefficient is computed as:
T _ _

P — Zt:l(Xt/,i - X/i)(Xt/,j - X’j) (9)

1,] — )

T > T -

VELXL, - X2\ [ (g, - X))
where 7; ; represents the Pearson correlation coefficient between time bins 7 and j, X;; is the value of
the time series at bin ¢ for trial ¢, Xt” ; 1s the value of the time series at bin j for trial ¢, X', is the mean

across trials for bin 7, X’ ; is the mean across trials for bin j.
These values are stored in an ACF matrix R of size Njags X Niags, With:

Rli,j] =1, forj>1I, (10)

where the diagonal elements are set to R[i,i] = 1 (self-correlation at time lag 0).

Step 3: Compute the trial average ACF To obtain the trial average autocorrelation function,
we compute the mean correlation for each lag k, considering the values along the diagonals of the ACF
matrix:

ACF(k) = iiR[i,i+k], (1)
ng —

where ny is the number of valid correlations available for each lag k.
The result is a one-dimensional autocorrelation function of length nj,gs.

7.2.4 iSTTC (trials)

In the iSTTC for trials, all trials for a given unit are concatenated, with zero padding inserted between
trials, to form a continuous spike-train signal. This concatenated signal is then used to compute the
STTC in a manner analogous to iSTTC. However, the T term is calculated using the concatenated signal
without zero padding.

The iSTTC for trials requires four parameters: the number of lags niaes, Which specifies the total number
of time lags over which the ACF is estimated; lag_shift, which defines the increment between successive
lags; At, within which the STTC evaluates spike train pair correlations; and zero_padding_len, which
is the length of zero padding appended to each concatenated trial. The method is implemented in the
acf_sttc_trial _concat function (available at https://github.com/iinnpp/isttc).

7.3 Intrinsic timescale estimation

To estimate the intrinsic time constant 7 from the signal autocorrelation function, we fit the function to
a single-exponential function defined as:

y(t) = ale™ +o), (12)

where a is the amplitude, b is the decay rate, and ¢ is an offset parameter. The time constant 7, which

characterizes the decay rate, is given by:
1

b )
We estimate the parameters a, b, ¢ using non-linear least squares fitting with the curve_fit function from
SciPy. To ensure numerical stability, we constrain b to be strictly positive during fitting: b > 0.

We estimated confidence interval for tau as following: since 7 depends on b, its standard error is derived
using error propagation:

(13)

T =

oy = % (14)
where oy, is the standard error of b, obtained from the covariance matrix of the fitted parameters.
To compute the 95% confidence interval for 7, we use the Student’s t-distribution, which accounts for
small sample sizes:
Tlower = T = ta/2,dof * 075 (15)
Tupper = T + ta/2,dof * O, (16)
where:

® t,/2,dof is the critical t-value for a 95% confidence level,

e dof is the degrees of freedom (number of data points — number of parameters).
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7.4 Intrinsic timescale estimation in the synthetic dataset

Intrinsic timescales were estimated at the level of individual units using four methods. The autocorrelation
function was computed for all units without any exclusion criteria. If the computation failed at a specific
time lag, the corresponding value was set to NaN.

For iSTTC, the following parameters were used: number of lags niags = 20, lag_shift = 50 ms and At =
25 ms. When applying iSTTC to trial-based data, we additionally used a zero_padding_-len = 3000 ms,
which corresponds to the amount of zero-padding appended to each concatenated trial. For ACF and
PearsonR, spike trains were binned with a bin size of 50 ms, and the number of lags was set to njags = 20.
The intrinsic timescale was determined by fitting a single-exponential decay function to the autocorrela-
tion curve, starting from a time lag of 1. Autocorrelation functions containing NaN values were excluded
from the fitting process.

7.5 Intrinsic timescale estimation in the mouse dataset

Intrinsic timescales were estimated at both the single-unit and brain-area levels using the same four
methods. The autocorrelation function was computed for all units without any exclusion criteria. If the
computation failed at a specific time lag, the corresponding value was set to NaN.

The same parameter settings were used as in the synthetic dataset.

For single units, the intrinsic timescale was determined by fitting a single-exponential decay function to
the autocorrelation curve, starting from a time lag of 1. For brain areas, the fit was performed starting
from a time lag of 2. Autocorrelation functions containing NaN values were excluded from the fitting
process. To estimate the area-level intrinsic timescale, all valid ACFs (those without NaNs) from the
area were used to fit a single exponential function.

7.6 Local variation

Local variation Lv was computed as follows [33]:

n—1 2
3 Ii — Iy
Lv = 1
! n_liz_;(li+li+l> ’ (17)

where I; and I;;1 are the i-th and i+1st ISIs, and n is the number of ISIs.
Lv equals 0 for regular spike trains, 1 for Poisson spike trains and is above 1 for bursty spike trains.

7.7 Relative estimation error

Relative estimation error REE was computed for the synthetic dataset as follows:

IT, — IT,,
IT,,

where I'T; is an estimated intrinsic timescale and ITy; is the ground truth intrinsic timescale.

To compute the REE of PearsonR and iSTTC trials in the mice dataset, we used as ground truth the
intrinsic timescale estimated using ACF or iSTTC, respectively. For the REE of methods applied to
spike trains of varying lengths or different numbers of trials, the intrinsic timescale computed from the
full signal was used as ground truth.

REE = x 100, (18)

7.8 Statistical analysis

Statistical analysis was done in R. Non-nested data were analyzed with (generalized) linear models and
nested data with (generalized) linear mixed-effects models. Initial model selection was based on ex-
ploratory analysis of the data, and then the goodness of fit was evaluated using explained variance
(R-squared) and residuals distribution (check_model function from performance R package). When sev-
eral models were fit on the same data, the model fit was compared using compare_performance function
from performance R package. 95% confidence intervals were computed using confint R function, p-values
for linear mixed-effects models were computed with the ImerTest R package, post hoc analysis with Tukey
multiple comparison corrections was done using emmeans R package, and the model fit was plotted using
sjPlot and ggplot2 R packages.
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7.9 Code availability

The complete analysis pipeline, including synthetic dataset and figures generation, is available at the
following open-access repository: https://github.com/iinnpp/isttcl
7.10 Data availability

The synthetic dataset generated in this study is available at https://gin.g-node.org/iinnpp/
isttcl The experimental dataset is available via the Allen Brain Observatory at https://allensdk.
readthedocs.io/en/latest/visual_coding_neuropixels.html|
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8 Supplementary information
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Supplementary Figure 1. Schematic representation of spike time tiling coefficient calcula-
tion (STTC) and its adaptation for intrinsic timescale estimation (iSTTC). (A) Schematic
representation of STTC calculation, modified from [31] and [37]. STTC quantifies the correlation between
spike trains A and B at a time lag of t. T4 (T5) denotes the proportion of the signal within t/2 of any
spike in A (B), and P4 (Pg) the proportion of spikes in A (B) that fall within t/2 of a spike in B (A). (B)
Schematic illustration of iISTTC. Spike trains A and B are created by temporally shifting and truncating
the original spike train, after which the standard STTC formula is applied as in (A).
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Supplementary Figure 2. Local variation is an experimental proxy for the excitation
strength parameter of the Hawkes point process. (A) Effect plot of the statistical model used to
investigate the REEs plotted in Figure 2C-D. Negative values indicate reduced REE. ACF is used as the
reference method. The x symbol denotes an interaction term between factors. (B) Schematic represen-
tation of local variation (Lv), modified from [33], and examples of spike trains with regular, random, and
bursty firing patterns. (C) Effect plot of the statistical model used to investigate how Lv correlates with
the Hawkes point parameters. (D) KDE plot displaying the distribution of Lv in the synthetic dataset,
and, in the inset, the line plot displaying predicted Lv values across excitation strength (left). Line plot
displaying predicted REE values for iSTTC and ACF across Lv (n = 10° single units) (right). Shaded
areas represent 95% confidence intervals. Y-axes are plotted on a logig scale. In (A) and (C), data is
presented as mean difference (blue dots) with 95% confidence interval. In (A), (C), and (D), asterisks
indicate a significant effect. * p < 0.05, *** p < 0.001. Generalized linear models with interactions (A)
and (D). Generalized linear model (C).
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Supplementary Figure 3. iSTTC yields significantly lower REEs than PearsonR on epoched
data. (A) Effect plot of the statistical model used to investigate the REEs plotted in Figure 3B-C.
Negative values indicate reduced REE, and PearsonR is used as the reference method. The x symbol
denotes interaction terms between factors. In (A), data is presented as mean differences (blue dots) with
95% confidence intervals. In (A), asterisks indicate a significant effect. * p < 0.05, ** p < 0.01, ***
p < 0.001. Generalized linear model with interactions (A).
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Supplementary Figure 4. Epoched and short continuous data lead to unreliable IT esti-
mates. (A) Effect plot of the statistical model used to investigate the REEs plotted in Figure 4A.
Negative values indicate reduced REE, and ACF is used as the reference method. The x symbol denotes
interaction terms between factors. (B) Same as (A) for the REEs plotted in Figure 4B. (C) Line plot
showing the percentage of spike trains whose standard error of the median IT estimate falls within a
specified tolerance range (5% to 15%) across resampling iterations. (D) Line plot displaying the IT
estimate standard error of the median as a function of the number of resampling iterations. In (A) and
(B), data is presented as mean differences (blue dots) with 95% confidence intervals. In (D), data is
presented as mean with 95% confidence intervals. In (A) and (B), asterisks indicate a significant effect.
* p < 0.05, *** p < 0.001. Generalized linear model with interactions (A) and (B).
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especially for low trial counts and short signals.
units across increasing signal lengths for ACF and iSTTC. From left to right: percentage of excluded
fits, percentage of units with autocorrelation function decline in the 50—200 ms range, percentage of units
with 95% confidence intervals excluding zero, and percentage of units with R-squared > 0.5. (B) Same
as (A), but for PearsonR and iSTTC across increasing numbers of trials.
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Supplementary Figure 6. Trial-based IT estimation methods yield unreliable IT estimates
on an experimental dataset. (A) Bar plot displaying the number of units per brain area (left), violin
plot displaying the firing rate per brain area (middle), and violin plot displaying the Lv per brain area
(right). The grey line denotes the Lv = 1 that corresponds to a random firing pattern. (B) Scatter plot
displaying brain area level ITs estimated by four methods across individual brain areas. (C) Heatmap
displaying brain area level ITs estimated by four methods across individual brain areas. Color codes
for the estimated IT, with warmer colors indicating higher ITs. (D) Effect plot of the statistical model
used to investigate the ITs plotted in Figure 5C, left. Negative values indicate reduced REE, and ACF
is used as the reference method. The x symbol denotes interaction terms between factors. (E) Same
as (D) for the REEs plotted in figure 5C, middle. In (A), data is presented as median, 25th, 75th
percentile, and interquartile range, with the shaded area representing the probability density distribution
of the variable. In (B), data is presented as mean with 95% confidence intervals. In (D) and (E), data
is presented as mean differences (blue dots) with 95% confidence intervals. In (D) and (E), asterisks
indicate a significant effect. ** p < 0.01, *** p < 0.001. Generalized linear model with interactions (D)
and (E).
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Supplementary Figure 7. iSTTC outperforms ACF and PearsonR on short continuous and
epoched data. (A) Effect plot of the statistical model used to investigate the REEs plotted in Figure
5D. Negative values indicate reduced REE, and ACF is used as the reference method. The x symbol
denotes interaction terms between factors. (B) Same as (A) for the REEs plotted in Figure 5F. (C)
Line plot showing the percentage of spike trains whose standard error of the median IT estimate falls
within a specified tolerance range (5% to 15%) across resampling iterations. (D)Line plot displaying the
IT estimate standard error of the median as a function of the number of resampling iterations. In (A)
and (B), data is presented as mean differences (blue dots) with 95% confidence intervals. In (D), data is
presented as mean with 95% confidence intervals. In (A) and (B), asterisks indicate a significant effect.
*H% p < 0.001. Generalized linear model with interactions (A) and (B).
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Supplementary Figure 8. iSTTC allows inclusion of more units than PearsonR also on
experimental dataset. (A) Bar plot displaying the percentage of excluded units across four methods.
Color codes indicate exclusion reasons, with dark grey for failed exponential fits and light grey for negative
R-squared values of the exponential fit (n = 6481 excluded fits across four methods, n = 1214 excluded
fits ACF, n = 1290 excluded fits iSTTC, n = 2345 exluded fits PearsonR, n = 1632 excluded fits iSTTC
(trials)). (B) Kernel density plot displaying the distribution of excluded units as a function of firing rate
(left) and local variation Lv (right) (n = 1412 units both methods failed, n = 933 units only PersonR, n
= 220 units only iISTTC). (C) Bar plots displaying the percentage of units with autocorrelation function
decline in the 50-200 ms range (left, n = 9331 fits across four methods), and the percentage of units with
95% confidence intervals excluding zero (right, n = 9146 fits across four methods), across four methods.
(E) Kernel density plot displaying the distribution of R-squared values (left), and bar plot displaying the
percentage of units with R-squared > 0.5 across four methods (right, n = 12102 fits across four methods).
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