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Preconfigured neuronalfiring sequencesin
humanbrainorganoids
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Neuronal firing sequences are thought to be the building blocks of
information and broadcasting within the brain. Yet, it remains unclear when
these sequences emerge during neurodevelopment. Here we demonstrate
that structured firing sequences appear in spontaneous activity of human
and murine brain organoids, both unguided and forebrainidentity directed,
as well as ex vivo neonatal murine cortical slices. We observed temporally
rigid and flexible firing patterns in human and murine brain organoids

and early postnatal murine somatosensory cortex, but notin dissociated
primary cortical cultures. These results suggest that temporal sequences
donotariseinanexperience-dependent manner, but are rather constrained
by a preconfigured architecture established during neurodevelopment. By
demonstrating the developmental recapitulation of neural firing patterns,

these findings highlight the potential of brain organoids as a model for
neuronal circuit assembly.

A growing body of experimental evidence supports the notion that
intrinsic activity has a central role in brain function, challenging the
traditional Jamesian view that higher-order function is an emergent
product of sensory input’. The mesoscale wiring of the cortex is domi-
nated by recurrent, lognormally distributed networks?, where only a
smallfraction of connections directly relay sensory input®. This skewed
organizationis thoughtto supportthe ability of neuronal assemblies to
generate temporally structured spiking sequences* . Sequential activ-
ity patternsrepresentdiscrete and temporally consolidated packets of
neuronalactivity, considered the basic building blocks of neural coding
and information broadcasting within the brain’. In mature brain cir-
cuits, spiking sequences predict spatial navigationand memoryinthe
murine hippocampus®, where ‘preplay’ encodes new experiences from

pre-existing sequence motifs™' thatarise before experience-dependent
representations form (for example, before exploration beyond the
nest)". In the murine visual cortex, evoked responses closely mirror
spontaneous sequential patterns™. Similar phenomena have also been
reported in the human cortex, where the replay of sequences under-
lies episodic memory formation and retrieval”. Moreover, spiking
sequences in the human cortex organize into a temporal backbone
of rigid and flexible sequence elements that are stable over time and
cognitive states™, support visual categorization tasks and encode non-
redundant information beyond latency and rate encoding®.
However, the emergence of spiking sequences during develop-
ment is not yet well-understood. During the third postnatal week,
the murine hippocampus generates spiking sequences that resemble
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those that will later be produced during navigationinalinear environ-
ment". Notably, these sequences emerge in an experience-independent
manner and do not improve upon additional experience in the same
postnatal week. Whether similar spiking sequences, potentially rep-
resenting other forms of experience, exist in other brain areas or at
earlier developmental stages remains an open question. The exist-
ence of such sequences would provide strong evidence in support of
the notion that spiking sequences are not experience-dependent but
are instead constrained by an innate architecture that is established
during neurodevelopment™®.

Brain organoids, three-dimensional (3D)-stem cell-derived models
of the mammalian brain that recapitulate key facets of the anatomi-
cal organization and cellular composition found in the developing
brain ", represent an ideal system for examining intrinsic (that is,
sensory-independent) aspects of neurophysiological development.
Neurons within brain organoids form functional synapses' and estab-
lish spontaneous network activity?*?. These self-organized neuronal
systems contain cellular diversity and cytoarchitecture necessary to
sustain complex network dynamics*as evidenced by the expression of
layer-specific excitatory pyramidal neurons and inhibitory GABAergic
interneurons***. Brain organoids also generate local field potential
oscillations that mirror preterm EEG patterns®, and have been used
to model network dynamics associated with rare genetic disorders®.

Here we analyzed single-unit activity from the following four
models of brain development: (1) humaninduced pluripotent stem cell
(iPSC)-derived brain organoids from two independent laboratories*?,
(2) mouse embryonic stem cell (ESC)-derived cortical organoids of
dorsal forebrain identity, (3) ex vivo neonatal murine somatosensory
cortexslices and (4) dissociated two-dimensional (2D) primary cortical
cultures®™?. Across allmodels, we observed bursting dynamics on the
order of 10> ms, consistent with biophysical integration time constants
that extend beyond single-neuronrefractoriness***'. Within organoids
and neonatalslices, asubpopulation of neurons generated nonrandom
sequential firing patterns, referred to as backbone sequences', which
were absent in 2D primary cultures. Backbone sequence-generating
neurons occupied the tails of right-skewed lognormal firing rate (FR)
and connectivity distributions. At the population level, activity par-
titioned into low-dimensional subspaces delineated by temporally
rigid sequences and higher-dimensional subspaces containing more
flexible units. Finally, for astable and flexible computation, theory sug-
gests that neural systems must exist near a regime called ‘criticality’,
characterized by scale-invariant dynamics across timescales. Using
temporal renormalization group theory®, we found that organoids,
slices and 2D cultures operate near criticality, with subsets exhibiting
correlations spanning multiple timescales. These results suggest that
brainorganoids recapitulate preconfigured, experience-independent
sequence dynamics while maintaining near-critical states, providing
insight into organizational principles that underlie the neural code’.

Results
Temporal dynamics of neuronal firing sequences in brain
organoids
Using high-density complementary metal-oxide-semiconductor
(CMOS)-based microelectrode arrays (MEAs)*’, we investigated the
temporal dynamics of the spontaneous neuronal activity across guided
and unguided human and murine brain organoids. Single-unit spike
eventsrevealed population bursts lasting several hundred milliseconds,
followed by quiescent periods up to several seconds (Fig. 1a). Moreo-
ver, we observed that the distribution of FRs follows a heavy-tailed,
right-skewed lognormal distribution (n=8, R*=0.97 + 0.04;
Extended DataFig.1a-c). This represents one facet of functional activity
conserved across brain regions and states in vivo’.

Reordering single units by the timing of their peak FR revealed
sequential activation patterns during bursts (Fig. 1b). Bursts
exhibited consistent rate profiles within organoids (Fig. 1c), with
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Fig.1| Temporal structure of spontaneous single-unit neuronal firing patterns
during population bursts in human brain organoids. a, Raster plot of single-
unit spiking (black dots) measured across the surface of a 500-um-thick human
brain organoid slice, positioned on top of an MEA. The population FR is shown

by the red solid line. Population bursts are marked by sharp increases in the
population rate. Burst peak events are denoted by local maxima that exceed 4x
r.m.s. fluctuationsin the population rate. The shaded gray regions denote the
burst duration window as defined by the time interval in which the population
rate remains above 10% of its peak value in the burst. b, Top: the instantaneous
FR of single-unit activity from a. Bottom: zoomed-in view of the neuronal firing
during population bursts reveals temporal segregation and contiguous tiling

of the peak FR of single-unit activity. Here the subsets of units that fire at least
twice during the burst are shown, re-ordered for each burst individually based
onthe time at which the unit has its maximum FR during the burst period. c,

The population FR (gray lines) is plotted relative to the burst peak for 46 burst
events measured across a 3-mininterval for the same organoid. The mean value is
shown by the solid line and the dashed lines represent 1s.d. d, Burst durations are
plotted from four different organoids. e, The distribution of single-unit FR peak
times relative to population burst peaks for the same organoids as in d. Box plots
(d,e)—boxes span the 25th-75th percentiles; the centerline marks the median
(50th). Whiskers extend to the most extreme values within1.5x the interquartile
range of the quartile 1and quartile 3. In violin plots, minima and maxima equal
the lowest and highest observations; the shaded area shows the variable’s
probability density.

durations spanning timescales on the order of ~10* ms (Fig. 1d and
Supplementary Fig.1c). Amajority of units’ FRs peaked ina close prox-
imity to the population burst maxima (Fig. 1e). These timescales align
with spontaneous and evoked sequences in the murine* and reptile
cortex’, as well as during memory retrieval in the human cortex.
Moreover, the dominant neuronal response time of sensory cortices
peaks with similar constants across regions and species®****¢, suggest-
ing a conserved temporal motifin cortical computation.

To assess stereotypy, we separated units into two classes. Back-
bone units were defined as those spikingin every burst (Fig. 2a, above
dashed line), while all other units were defined as nonrigid (Fig. 2a,
below dashed line). Backbone units, residing in the high-firing tail of
the lognormal distribution (Extended Data Fig. 1d), displayed stable
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Fig.2|Sequential activation patterns in human brain organoids generate a
stereotyped temporal backbone. a, Single units were divided into backbone
and nonrigid units. Backbone units, defined as spiking at least twice in every
burst, are plotted above the dashed line; nonrigid units are below. Within
eachgroup, units are ordered by their median firing peak time relative to the
burst peak across all bursts and referred to as unit ID. b, Zoomed-in view of the
backbone units across four bursts with the same unit order. ¢, Average burst
peak-centered FRs from 46 burst events. Units maintain the same order inaand
b. Please note the progressive shift in firing peak times relative to the burst peak
andanincreased spread of activity for units peaking later. d, Spiking activity of
three units is plotted over a fixed time window relative to burst event peaks. Rows
represent spikes from a single burst. Two backbone units are shown with strong
temporal alignment to the burst peak and one nonrigid unit with poor alignment.
Heatmaps of burst-to-burst cross-correlation coefficients of the burst-centered
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FRs from the units. e, Backbone neurons consistently exhibited higher burst-to-
burst correlation coefficients compared to nonrigid units (P <107, two-sided
linear mixed-effects model, n = 4 organoids and 507 single units). Box plots—
boxes span the 25th-75th percentiles; the centerline marks the median (50th).
Whiskers extend to the most extreme values within 1.5x the interquartile range
ofthe quartile 1and quartile 3. In violin plots, minima and maxima equal the
lowest and highest observations; the shaded area shows the variable’s probability
density. f, FR peak times relative to burst peaks for backbone units. Black dots
mark individual bursts, and red shading indicates the probability distribution.

g, Variance of relative firing peak times for backbone units across four organoids.
Units are ordered by median peak time, showing significantly greater variability
inlater-firing neurons (P=1x10"¢, two-sided linear mixed-effects model for
relation between relative FR peak and peak time variance). The line represents
the mean and the shaded area represents the 95% confidence interval.
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temporal delays across bursts (Fig. 2b,c and Extended Data Fig. 2).
Clustering bursts by their pairwise correlation matrix confirmed that
backbone patterns were preserved across clusters, whereas non-
rigid units varied significantly (P<107%, linear mixed-effects model;
Extended Data Fig. 3). Longitudinal recordings showed that the
relative fraction of backbone units declined over development
(Supplementary Fig. 2). This transition parallels the in vivo incorpo-
ration ofinhibitory interneurons into maturing excitatory networks®,
also observed histologically in the human (Supplementary Figs. 3
and 4) and murine organoids (Supplementary Figs. 5-7).

Tofurther test theimpact ofinhibitory tone on backbone neurons,
we administered gabazine (10 pM) through bath application to block
GABA, receptors in murine cortical organoids. Gabazine increased
burst frequency, backbone participation and their rank-order statis-
ticsrelative to control conditions. In contrast, blocking AMPA (10-pM
NBQX) and NMDA (20-pM R-CPP) receptors, inhibiting excitatory syn-
aptic transmission, abolished bursts, consistent with prior work?? and
eliminated sequences (Extended Data Fig. 4). These findings highlight
the dual role of excitation and inhibition in shaping spike timing and
sequencerigidity.

To quantify firing consistency during spontaneous bursts, we
analyzed single-unit activity relative to the burst peak, following
methods used in vivo*. Some units displayed sharp peaks with narrow
jitter (Fig. 2d, left), others showed delayed but consistent responses
(middle), while many lacked preference and fired irregularly (right).
Backbone units, comprising 28% + 14% (mean + s.d.) of total neurons
(n=8organoids; Supplementary Fig.1), displayed significantly higher
burst-to-burst correlations (Fig. 2e). Their firing patterns remained
stableacross hours (Supplementary Fig. 8) and persisted over months,
with correlations increasing during development in both human and
murine organoids (Supplementary Fig. 2c; P <107, two-way analysis of
variance).Randomized spike trains that preserved mean and single-unit
FRs abolished sequences and substantially reduced burst-to-bust cor-
relations (Extended Data Fig. 5 and Supplementary Figs. 9 and 10).
This resembled 2D primary cultures with randomized architectures
that also lacked sequential firing (Extended Data Fig. 6). Finally, the
variability of firing peak times increased with their average latency
(Fig.2f), arelationship consistently observed across organoids (Fig. 2g;
P <107, linear mixed-effects model). These results indicate that brain
organoids cansupport stereotypical sequential activation with variable
dynamics that mirror the propagation of spontaneous activity within
the cortical mantle in vivo**®,

Backbone units are a highly correlated ensemble

To quantify firing patterns during spontaneous bursts, we examined
pairwise correlations of single-unit FRs. Backbone units generated
stereotyped activation sequences that were preserved across bursts
(Fig. 3a). Our analysis of sequential co-activation showed consistent
firing onsets and peak times with average phase lags of ~-10 ms (Fig. 3b;
example units a to b =5 ms, example units b to c =7 ms), as well as
longer lags spanning hundreds of milliseconds between backbone
pairsduetotherecurring sequential activity (Supplementary Fig. 11).
Cross-correlation analysis revealed that backbone units formed a highly
correlated ensemble with nonzero phase lags (Fig. 3c,d). Correlation
coefficients were significantly higher in backbone compared to non-
rigid units (Fig. 3e) and occupied the tail of lognormal distribution
(Fig.3fand Supplementary Fig.12c-e). Together, these results suggest
that a minority population of high-FR neurons is strongly tuned to
population dynamics and functions as a stopwatch in the backbone
among the more rigid units of the population.

Population FR timing across burst epochs

Inprevious sections, we analyzed pairwise single-unit relationships. We
thenasked whether FRs were temporally structured at the population
level during bursts. By calculating the cosine similarity of instantaneous

FRsacross bursts, we observed asharp similarity peak coinciding with
backbone activation, followed by a plateau and decay after burst termi-
nation (Fig.4a,b). Variance in similarity showed the opposite trend—it
was high during nonbursting periods, rapidly declining at burst onset
and remaining low until bursts ended (Fig. 4¢).

Separating unitsrevealed that backbone ensembles displayed sub-
stantially higher similarity than nonrigid units or shuffled data (Fig. 4d).
Notably, the top 20th percentile of highly correlated units (Fig. 3¢)
generated substantially higher burst similarity than the full popula-
tion, with the effect diminishing as larger percentiles were included
(Supplementary Fig. 13a,c). Conversely, the lowest 20th percentile
reduced similarity, with differences shrinking as more weakly corre-
lated units were added (Supplementary Fig.13b,c). Across organoids,
burst similarity increased at backbone onset and plateaued during
their activation (Fig. 4e and Supplementary Fig.13d; n = 8 organoids),
underscoring the temporal stability backbone ensembles provide
across bursts.

We then examined firing trajectories with principal component
analysis (PCA). Burst-related trajectories occupied conserved paths
in principal component (PC)-space aligned to burst timing (Fig. 4f,
left). When populations were divided, backbone units captured far
more variance (73%) in the first two PCs compared to nonrigid units
(25%; Fig. 4f, middle and right, Fig. 4g and Supplementary Figs. 14 and
15). Thus, backbone ensembles define a low-dimensional subspace,
while nonrigid units exhibit irregular, higher-dimensional dynam-
ics requiring more PCs. Notably, randomization preserving both
population and single-unit mean rates abolished these trajectories
(Extended Data Fig. 5), demonstrating that structured temporal cor-
relations are not explained by mean FRs alone.

Revealing temporal structure with a hidden Markov model

We previously demonstrated that functional connectivity in human
brain organoids follows a heavy-tailed distribution?, consistent with
scaling rules observed in cortical circuits’. These motifs are thought
to underlie spontaneous activity that propagates broadly across the
cortical mantle, mirroring sensory-evoked responses in vivo*’. To fur-
ther probe this repertoire of dynamics, we applied a hidden Markov
model (HMM).

Single-unit activity was binned into 30-ms intervals, capturing
fast electrophysiological timescales typical of cortical circuits (-10
to 50 ms)*°, and the HMM was stable over this variable time window
(Supplementary Fig. 16). The HMM clustered the data into discrete
states, each representing a linear combination of single-unit firing
patterns occurring together within bursts. The state transitions are
visualized as shaded raster plots aligned closely with burst trajecto-
ries (Fig. 5a). Heatmaps of unit firing and histograms of average rates
revealed distinct manifolds of activity delineated by differential gain
and attenuation across units associated for each state (Fig. 5b). While a
20-state model was used for visualization, similar results were obtained
acrossarange of hidden state counts (Supplementary Fig.17). Notably,
randomized data preserving mean unit and populationrates®yielded
lower log-likelihoods (Supplementary Fig. 18), confirming that the
transitionsin real datareflected meaningful structure rather thantrivial
differences explained by the mean rate. The analysis of transitions
showed that firing states represent bothincreases and decreasesinrela-
tive unit activity (Fig. 5b). Low-probability states appeared before the
burst peak, rapidly converged into high-probability transitions atand
immediately after the peak, and then relaxed back to low probabilities
perunittime (Fig. 5¢). This narrowing effect in state space may establish
asequential arrow of time, where initial states preserve more precise
timing relative to the following states (Supplementary Fig. 19). As
burstsattenuated, the number of states broadened again. The number
of realized states during bursts remained similar over a variable range of
hidden states, an effect consistent across different hidden state counts
(Supplementary Fig. 20), highlighting the robustness of the model.
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Fig. 3| Firing patterns between single backbone units within bursts are
nonrandom. a, Spike times and computed FRs for three representative units

are shown for the first and last burst events of the recording, respectively.

b, Burst peak-centered average FRs for the three units shownina are calculated
over all burst events. The narrow lines indicate the FRs for each individual burst
event. The thicklines (dashed black lines in the inset) indicate the average

over all bursts. ¢, Pairwise cross-correlation coefficients computed between

the instantaneous FRs of all pairs of units with at least 30 spikes counted over

all burst events. A maximum lag time of 350 ms was used. The solid red lines
separate the backbone units and the nonrigid units. d, Lag times leading to the
maximum cross-correlation values presented in c. Values are clipped at +150 ms.
e, Pairwise cross-correlation scores are plotted between unit types. Correlations
between backbone units (blue) are significantly higher (P <107%°, two-sided linear

Pairwise cross-correlation

mixed-effects model, n =4 organoids and 34,056 single-unit pairs) than the
cross-correlations between pairs of backbone and nonrigid units (gray) and pairs
of nonrigid units orange). Box plots—boxes span the 25th-75th percentiles; the
centerline marks the median (50th). Whiskers extend to the most extreme values
within 1.5x the interquartile range from quartile 1and quartile 3. In violin plots,
minima and maxima equal the lowest and highest observations; the shaded area
shows the variable’s probability density. f, The histogram of all pairwise cross-
correlations follows a skewed, lognormal distribution (x axis is log scale). The
pairwise connections between pairs of backbone units populate the tail of this
distribution for all organoids, as can be seen from the distribution means of

the backbone-to-backbone distributions in e and marked on each histogram
(circlesonline).

Wethen asked how these states mapped onto backbone versus non-
rigid units. Backbone ensembles spanned a larger pool of HMM states
than nonrigid units (Fig. 5d and Supplementary Fig. 21). The PCA of state
versus unit realizations revealed separability between these groups by
hidden state structure (Fig. 5e). Linear support vector machine classi-
fiers trained on hidden state features distinguished backbone from
nonrigid units with 83.9% + 12.0% accuracy, significantly exceeding
the 63.2% +10.4% achieved when using FR alone (Fig. 5f). Together,
these findings highlight that spontaneous burstsin brain organoids are
composed of ensembles, linked together in time to establish neuronal
manifolds with temporal structure not observed in randomized data
(Supplementary Fig. 22). These manifolds represent a latent multidi-
mensional space of temporally rigid and flexible neuronal subpopula-
tions whose probabilistic trajectories are Markovian in time, namely,
future states depend on the system’s current state. Such dynamics
align with recent experimental and computational models proposing
that local pairwise correlations drive irreversibility in noisy logical

computations, which contribute to alocal arrow of time and generate
anirreversible Markovian process independent of sensory input™®.

Endogenous sequences in early developing neonatal cortex

We then asked if spiking sequences also emerge in early developing
cortical circuits. Sequential activity patterns are crucial components
of mature brain function’ and support early navigational tasks”, yet
itisnot known whether such patterns are present before eye opening
and explorationoccurs. To address this question, we performed acute
extracellular recordings from coronal slices of neonatal murine soma-
tosensory cortex. We observed alternating periods of quiescence and
abrupt, synchronized burst events resembling those described in vivo
(n=6slices; Fig. 6a and Extended Data Fig. 7). At this stage, cortical
activity is discontinuous, alternating between bursts and quiescent
periods, and spike trains are highly correlated®. With the exception of
olfaction, which controls cognitive maturation*’, most sensory systems
remain underdeveloped.
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Fig. 4 |Backbone units provide a stable, low-dimensional reference frame

for the population bursts. a, Population FRs from 46 burst events from a single
humanbrain organoid are shown relative to burst peaks (gray traces). The mean
FRis shown by the solid black line, and the dashed black lines denote the s.d.
Thered trace shows the average burst similarity score, plotted on the right axis.
The blue box highlights the period from the earliest to the latest average FR
peak times across all backbone units. b, Burst similarity between each pair of
bursts s plotted at two reference points—50 ms before the burst peak (left) and
100 ms after the burst peak (right), corresponding to the vertical dashed lines
ina.c, Burstsimilarity across all pairs of burstsis plotted relative to the burst
peak. Each gray linereflects a burst pair, and the red trace represents the s.d. per
recording frame. The blue box marks the backbone window describedina.d,
Average similarity computed separately for backbone units, nonrigid units and
shuffled data. Backbone units consistently display significantly higher similarity

Normalized PC

throughout the backbone window compared with nonrigid or shuffled controls
(P<107%, paired two-sided t test). e, The average burst similarity increased
consistently across organoids following the onset of the backbone period.

f, Plot of the first two PCs of the single-unit FRs for all units (left), backbone units
(middle) and nonrigid units (right). Each dot represents a recording frame and
is colored by the time point relative to the closest burst peak. Please note that
backbone units reproduce the circular manifold of all units. Nonrigid units lack
this trajectory, and variance explained by the first two components is reduced.
Theinset shows the burst-aligned population rate, color-coded by time relative
to theburst peak, illustrating the correspondence between activity and manifold
trajectory. g, Cumulative variance explained by PCA for backbone (blue) and
nonrigid (orange) subsets relative to all units. Across organoids, the first PCs

of backbone activity account for more variance than the full population, while
nonrigid units account for less.

We then quantified the consistency of firing patterns. Single units
were divided into backbone and nonrigid groups based on the recruit-
ment within bursts, after the approach used in organoids (Fig. 6b,
Supplementary Fig.1and Extended DataFig. 7). Averaging each unit’s
firing relative to burst peaks revealed sequential activity among back-
bone units consistently recruited during bursts (Fig. 6¢). Analysis
of spike times confirmed preserved temporal offsets between unit
peaks with consistent shifts between their peak FRs (Fig. 6d). As in
organoids, backbone units formed a strongly correlated core com-
pared to nonrigid units (Fig. 6e-g and Supplementary Figs. 9 and
12), with that activity generating temporal sequences that spanned
~10? ms timescales. Together, these results demonstrate that slices of
the developing murine somatosensory cortex generate bothrigid and
flexible firing patterns that establish sequential activation patterns
commonly observed in mature cortical circuits across a range of spe-
cies and brainregions’.

Comparing sequences across neurodevelopmental models

To understand the role of three dimensionalities in neurodevelop-
ment, we compared neuronal firing patterns generated by 2D murine
primary cortical cultures to those observed in human and murine
brain organoids and acute murine neonatal slices. All four systems
displayed population bursts with consistent firing units recruited
during burst epochs (Supplementary Fig. 1). Backbone neurons had
significantly higher FRs than nonrigid counterparts (Fig. 7a, P<107¢,
linear mixed-effects model, and Supplementary Fig. 23). However,
primary cultures exhibited overall higher FRs across both popula-
tions (P <107 for human organoids and neonatal slices). In contrast,
backbone unitsinorganoids and neonatal slices showed significantly
stronger normalized burst-to-burst single-unit firing correlations com-
pared to primary cultures (Fig. 7b and Supplementary Fig. 9). After
normalization relative to randomized data, backbone units remained
significantly more correlated than nonrigid units in organoids and
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Fig. 5|HMMs explore stable trajectories and population motifs. a, Repeated
sequences of discrete hidden states are shown during three example bursts. The
HMM assigns each 30-ms bin of spiking activity a hidden state, represented by
background colors. The stereotyped trajectory of these statesis visible both in
the sequence of state transitions and in the population FR (red trace). Spiking
events are shown as araster, with 27 backbone units displayed above and 104
nonrigid units below adividing line. b, Each hidden state represents a stochastic
but repeated activity pattern across units. Example realizations of three states
are displayed as heatmaps, along with subpanels showing the average FR of each
unitand their difference between adjacent states (AFR, red). ¢, The sequence

of hidden states follows a stereotyped path across bursts. Heatmap of state
probabilities relative to the burst peak shows low variability during the first 0.3 s,
corresponding to the structured backbone sequence, with significantly higher
variability before the burst begins and later in the burst. d, The probability of unit
activity across hidden states is displayed as a heatmap. Backbone units (blue)

PC1(51% variance)

Individual organoids

remain consistently active across multiple states, including those outside the
burst peak states 11 and 12. Nonrigid units (orange) are active in various states.

e, Backbone and nonrigid units are nearly linearly separable when classified by
their consistency across states. The first two PCs of vectors represent each unit
as the sequence of its consistency across states. Backbone and nonrigid units are
indicated with color. f, FR alone is insufficient to classify units. Violin plots show
linear separability scores across fitted HMMs from eight organoids. State-based
classification substantially outperforms FR-based classification (diamond
marker) inall cases (two-sided Student’s ¢ test, P= 0.00021, n = 8 organoids). Box
plots (f)—boxes span the 25th-75th percentiles; the centerline marks the median
(50th). Whiskers extend to the most extreme values within 1.5x the interquartile
range of the quartile 1and quartile 3. In violin plots, minima and maxima equal
the lowest and highest observations; the shaded area shows the variable’s
probability density.

slices (P<10™ and P=7 x107*, linear mixed-effects model), whereas
no significant difference was observed in primary cultures (P = 0.06).
Despite variability between batches, these differences were consistent
across human and murine organoids, across whole and sliced prepara-
tions measured in different laboratories (Extended Data Figs.2and 8
and Supplementary Fig. 9).

Pairwise cross-correlations further underscored the differ-
ences between single-unit FRs among backbone and nonrigid units
(Fig. 7c and Supplementary Fig. 12). Backbone-to-backbone pairs in
organoids and slices exhibited significantly higher correlations com-
pared to randomized controls (P <107, linear mixed-effects model),
an effect not observed in primary cultures (P> 0.99). These differ-
ences were observed in organoids across developmental time points
(Supplementary Fig. 2b-d), across different cell lines and human

organoid protocols andlaboratories** (Extended Data Fig. 2f),and in
murine forebrain organoids (Supplementary Figs.5and 12). Incontrast,
2D primary cultures exhibited synchronous, burst-centered activity that
lacked sequential structure (Extended Data Fig. 6¢), identical to rand-
omized organoid data (Extended Data Fig. 5¢). Consequently, human
and murine organoids showed significantly larger cross-correlation lag
times among backbone pairs compared to primary cultures (Fig. 7d;
P<107 and P=0.011), highlighting their ability to sustain correlated
activity on-~10’ms timescales typical of cortical and subcortical circuits
with the capacity to support sequential firing patterns”%3+%,

Wethen applied PCA to quantify variance explained by backbone
and nonrigid units. In organoids, backbone units explained a signifi-
cantly larger fraction of variance than other model types (Fig. 7e and
Supplementary Fig. 15; P < 0.001, linear mixed-effects model). These
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Fig. 6 | Recurring sequential activation patterns in murine neonatal cortical
slices generate a stereotyped temporal backbone. a, Raster plot of single-

unit spiking recorded from the somatosensory cortex of a P13 murine neonatal
brainsslice placed on an MEA. The red trace shows the population FR, with bursts
marked by sharp increases. Burst peaks are denoted by local maxima that exceed
4xr.m.s. fluctuationsin the population rate. Shaded gray regions denote burst
durations, defined asintervals where the population rate remains above 10% of
its peak. b, Instantaneous FRs of units from a after reordering. Backbone units are
plotted above the dashed line, nonrigid units below. Units are ordered by their
median FR peak time relative to the burst peak. For slices, backbone units were
defined as spiking at least twice in 290% of bursts. ¢, Average burst peak-centered
FRsacross all bursts. Units maintain the same order asinb. A progressive delay in
peak times relative to the burst peak is observed, with later-firing units showing
broader activity windows. d, Example spike trains for two backbone units across
bursts, one aligned near the peak and one delayed, along with corresponding

Individual cortical murine slice

average burst-centered FRs (red). Heatmaps of burst-to-burst correlation
coefficients are shown below for the same units. e, Pairwise cross-correlations of
instantaneous FRs from all units with 230 spikes. Backbone and nonrigid groups
are separated by red lines. f, Average burst-to-burst correlations for backbone
and nonrigid units for all neonatal cortical slices. Backbone units consistently
exhibited higher correlations than nonrigid units (P < 10, two-sided linear
mixed-effects model, n = 6 mice and 959 single units). g, Pairwise correlations
from all unit pairs grouped as backbone-backbone, backbone-nonrigid or
nonrigid-nonrigid. Backbone-backbone correlations were significantly
stronger than mixed or nonrigid pairs (P <10, two-sided linear mixed-effects
model, n=6 mice and 125,607 single-unit pairs). Box plots (f,g)—boxes span the
25th-75th percentiles; the centerline marks the median (50th). Whiskers extend
to the most extreme values within 1.5x the interquartile range of the quartile 1
and quartile 3. In violin plots, minima and maxima equal the lowest and highest
observations; the shaded area shows the variable’s probability density.
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Fig. 7| Backbone units provide astable reference frame in brain organoids
and murine neonatal cortical slices, but not in murine primary cultures.

a, Average FR for backbone and nonrigid groups from human brain organoids
(n=8,1,048 units), murine cortical organoids (n = 9,1,179 units), murine
neonatal cortical slices (n = 6,786 units) and murine primary cultures (n =8,
1,048 units). Each model type differed significantly from the others, and within
each model backbone and nonrigid units were significantly different (P<107%).
b, Normalized average burst-to-burst correlations grouped as in a. Significant
differences were observed between model types and between backbone and
nonrigid units for organoids and slices (human organoids, P <1072°; murine
organoids, P=0.0011; murineslices, P= 0.0066; murine primaries, P=0.93).

¢, Normalized pairwise cross-correlations grouped into backbone-backbone
and nonrigid-nonrigid pairs. Backbone pairs showed significantly higher
correlations in organoids (human, P=9 x107; murine, P=1x10"%), but not
inslices (P=0.10) or primaries (P=0.16).d, Correlation lag times between
backbone units were larger for organoids compared to primary cultures
(human organoid versus primary, P=1x 10%; murine organoids versus primary,
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P=0.011), with human organoid differing from murine organoids (P = 0.0096)
and slices (P=0.0002). Murine organoids versus slices (P= 0.47) and primary
cultures were not significant (P=0.53). e, Normalized variance explained by

the first three PCs for all units, backbone and nonrigid groups. Differences

were significant for organoids (human, P=2 x107; murine, P= 0.036), but not
slices (P=0.29) or primaries (P= 0.21). f, HMMs revealed higher-dimensional
state-spaces in organoids compared with primary cultures. Dimensionality was
defined as the number of components explaining 75% of variance. Organoids
required more dimensions than primaries (human, P=1.2 x10°; murine,
P=0.0026), but not compared with slices (human versus slices, P= 0.036; murine
versusslices, P=0.51). Atwo-sided linear mixed-effects model with interactions
for unit type and model type was used for a-f (sample sizes ina). Box plots (a-d)—
boxes span the 25th-75th percentiles; the centerline marks the median (50th).
Whiskers extend to the most extreme values within 1.5x the interquartile range

of the quartile 1and quartile 3. Inviolin plots, minima and maxima equal

the lowest and highest observations; the shaded area shows the variable’s
probability density.
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findings highlight that organoids generate sequential patterns residing
inalower-dimensional subspace (explained by fewer PCs) embedded
withinahigher-dimensional background of irregular activity. Neonatal
slices also contained backbone units capable of generating sequences
thatspan ~10>ms timescales, but with less stereotypy than organoids.
By contrast, recurring sequential activation was not sustained in 2D
primary cultures.

We then asked if our analysis using HMMs would provide further
insight. Across models, nonrigid units were predominantly Poisson,
while backbone units were non-Poisson (Supplementary Fig. 24). In
theinvivo cortex, Poisson randomness is not universal®, where archi-
tectonically defined regions generate homologous firing patterns that
differ systematically across brain regions but remain conserved across
species*’. To compare complexity across models, we defined dimen-
sionality as the number of PCsrequired to explainafraction  of HMM
variance. With 8= 0.75, human organoids were separable from slice
data (P=0.04, linear mixed-effects model with Poisson observations),
while primary cultures had significantly lower dimensionality than both
human (P < 0.0001) and murine organoids (P= 0.003; Fig. 7f), with
similar trends existing for arange of values of 6 (Supplementary Fig. 25).
Within organoids, hidden states captured multidimensional clusters of
activity, whereas randomization collapsed them to aone-dimensional
space that scales with the population rate (Supplementary Fig. 22).
Although the number of realized states was relatively insensitive to
the number of hidden states (Supplementary Fig. 20), traversal rates
differed—3D models exhibited lower rates than 2D primary cultures
(Supplementary Fig. 26).

Firing pattern stability

Despite similarities in firing patterns and stable sequences observed
in organoids and neonatal slices, 2D counterparts are dominated
by Poisson-like irregularity, which precludes the generation of sus-
tained temporal patterns and confines state transitions, as defined
by HMM, to a lower-dimensional space (Fig. 7f). However, all models
are capable of generating complex firing patterns with structured
population dynamics across multiple timescales. Across phylogeny,
brains and other complex systems exhibit signs of criticality*’. Criti-
cality is a dynamical state of multiscale, marginally stable dynamics
that simultaneously optimizes information transmission, storage,
dynamic range, susceptibility and robustness. Criticality is widely con-
sidered ahomeostatic endpointinthebrain®, thatis, in the intact brain,
maintained by sleep*’. While measurements of criticality traditionally
require extended sampling of asystem’s activity, recent progress solves
this problem by applying renormalization group theory®. We used
this framework to quantify how close neural dynamics are to tempo-
ral scale-invariance. At criticality, temporal correlations span many
timescales without a characteristic scale, captured by the distance
metric d,. Values between 0.0 and 0.1 indicate near-critical dynamics
that span many timescales without a characteristic scale, while larger
values reflect deviation. A subset of all preparations produced activ-
ity consistent with autoregressive models and exhibited near-critical
dynamics (Supplementary Fig. 27). Spike-time shuffling consistently
abolished temporal criticality across preparations, producing sig-
nificantly larger d, values (P <10° compared to intact data, two-sided
Welch ttest). Murine organoids showed particularly strong agreement
between empirical dataand model predictions. Thisindicatesthat the
capacity for scale-invariant dynamics may be afundamental property
of neural circuits that emerges during development, independent of
precise circuit architecture or environmental context.

Discussion

Neuronal sequences are believed to form the basis for information
broadcasting and computation in the brain*®*", Whether such
sequences are emergent features of early brain development, a stage
dominated by spontaneous activity with the potential to encode

information, remains unclear**. We report that temporally structured
neuronal sequences emerge in human and murine brain organoids
that assemble in the absence of sensory experience. We identify a
subpopulation of temporally rigid, sequence-generating ‘backbone’
neurons that reside in alow-dimensional subspace. In contrast, we
found a larger population with more irregular activity, residing in
higher-dimensional space. Sequence-generating backbone neurons
were also observed in neonatal murine cortical slices that developed
under minimal sensory input, but were absent in 2D murine cortical cul-
tures where intrinsic anatomical organizationis disrupted. Our results
support the hypothesis that neuronal sequences are ‘preconfigured’
as aninnate 3D architecture established during neurodevelopment,
arisingindependent of experience.

Toaddressthe open questions above, we leveraged state-of-the-art
high-density extracellular recordings from 3D-stem cell-derived mod-
els of the human and murine brain, known as brain organoids, which
represent anintrinsically self-organized neuronal system that recapitu-
lates key facets of early brain development'”?° and the establishment
of functional circuits®?>*, Our results demonstrate that temporally
rigid sequences represent a subpopulation that projects back onto a
minority of strong functional connections with alognormal distribu-
tion (Fig. 3).Inaseminal paper, it hasbeen demonstrated that emergent
computational properties fromsimple properties of many cells, rather
than complex circuits, are capable of generalization and time sequence
retention**. Therefore, it’s not surprising that the temporal structure
of spontaneous and evoked patterns of cortical circuits is similar**,
because suchrepresentations are drawn fromafunctionally connected
neuronal pool with right-skewed, lognormal scaling rules’.

Units that fire within neuronal sequences exhibit varying tem-
poral precision. Neurons firing at the beginning of population bursts
are most constrained, whereas later-firing units are more flexible
(Fig. 2f,g). An analogous organization is present in rat somatosen-
sory and auditory cortex* and the three-layered turtle cortex’. In the
hippocampus, experience-dependent replay emerges from spon-
taneous, experience-independent preconfigured sequences'. The
balance between temporally correlated andirregular spiking popula-
tionsis essential forinformation processing. For example, large-scale
recordings from mouse visual cortex and monkey brain reveal a
low-dimensional subspace of neurons entrained to population dynam-
ics, insensitive to external stimuli*®. Similarly, in organoids we observe
abackbone subspace embedded within higher-dimensionalirregular
activity (Fig.4).Stochastic firingin randomized organoid data closely
mirrors 2D dissociated cortical cultures, which show culture-wide syn-
chronization that cannot sustain sequential patterns (Extended Data
Figs.5and 6), likely reflecting highly redundant 2D network configu-
rations. These findings highlight that neurogenesis and synaptogen-
esis in organoids generate structured networks rather than random
assemblies. Our results support the hypothesis that construction of
complex networks capable of recapitulating in vivo neural dynamics
requires morphogenesisin three dimensions. Indeed, recent work has
demonstrated that human brain organoid circuits, when combined
withamachineinterface, canactasreservoirs for computing, including
speech recognition and nonlinear equation prediction.

In vivo, a minority pool of strongly correlated neurons has been
proposed to formafast-acting system embedded withinamore weakly
coupled background, functioning as a preconfigured brain state>.
The balance between rigid and flexible spiking and the emergence of
sequential patterns are features of 3D cytoarchitecture, supported
by our analysis of spontaneous activity in the neonatal murine soma-
tosensory cortex (Fig. 6). A neurophysiological backbone is likely
organized during neurogenesis, as pyramidal progenitors establish
high-firing subnetworks that remain functionally connected across
brain states'. In human and murine organoids, highly correlated back-
bone units increase in burst-to-burst correlation over development
(Supplementary Fig.2). This transition coincides withthe incorporation
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of inhibitory interneurons®*® and reflects an excitatory—-inhibitory

balance shifting toward inhibition observed in vivo”, while preserv-
ing right-skewed functional rules*. Temporal rigidity of sequences is
strongly modulated by GABAergic inhibition (Extended Data Fig. 4),
where blockade induces heightened burst synchronization, consist-
entwith GABA’sinhibitoryrole. These results underscore interneuron
signaling as critical for network homeostasis and for shaping early
dynamics before sensory input®. Although GABA was once thought
to be excitatory during the early development®’, growing evidence
indicates inhibitory effects occur much earlier****2, Our findings align
withthis perspective, highlighting interneurons as key contributors to
the temporal structure of early neuronal sequences. Brain organoids
thus provide a powerful platform to study how specific cell types and
regional interactions assemble functional microcircuits®**.

Brain organoids represent a self-organized neurodevelopmen-
tal system that operates as a closed system devoid of external input,
yet capable of generating activity patterns resembling early brain
dynamics. Within these firing patterns, we observed overlap between
non-Poisson-like activity in organoids and neonatal slices. By con-
trast, primary cortical cultures with randomized cytoarchitecture
showed lower-dimensionalstate transitionsinan HMM (Fig. 7). In vivo,
brainregionsbalance firing patterns ranging fromirregular Poisson to
clock-like regularity, depending on local architectures, and these are
thought to be critical for higher-order function®. In fact, a minority
‘backbone’ of consistently firing neurons can predict motor control with
highaccuracy inhumans®and has been proposed as an ‘ansatz’ or initial
estimate for aligning behavior to environmental input’. We posit that
highly correlated, non-Poisson components may provide the basis for
temporal sequence emergence in development. Early sequences may
function as an internal reference for larger-scale dynamics in mature
circuits’, later calibrated by sensory-motor interactions®. Indeed, in
postnatal murine brain, preconfigured motifs arise spontaneously in
rest and are not improved by sequential experience during the third
week". We further show that firing in organoids and neonatalslices gen-
erates strong nonrandom correlations with temporaljitter and nonzero
phase lags. These ensembles form manifolds of trajectoriesidentifiable
by an HMM, with a core of strongly interacting units (Fig. 5c¢,d). Such
subsets may act as ‘irreversible’ noisy logic elements that establish a
local arrow of time, similar to recent findings in retinal circuits, neuronal
activity remainsirreversible even when their inputs are not™.

In summary, our analysis of spontaneous activity, generated
by stem cell-derived human and murine brain organoids, demon-
strates that structured spiking sequences can emerge without sen-
sory experience and motor output, supporting the preconfigured
brain hypothesis. These results are in line with recent work showing
how pharmacologically abolishing all central nervous system activity
during the development of the larval zebrafish did not alter an oculo-
motor behavior®®, suggesting that complex sensory-motor systems
are hard-wired by activity-independent mechanisms. Our findings
recall the philosophy discussed in ref. 57, which posited an a priori
construction of a space-time map that, in modern terms, could serve
asa‘scaffold’ toenable the braintointeract with and make sense of the
world. In conclusion, brain organoids provide a heuristic platform for
exploring how exogenousinputs refine self-organized neuronal circuits
imbued with the innate capacity to process information and compute®,
while also facilitating new studies into the genetic mechanisms gov-
erning the assembly of functional circuitry during early human brain
development®® ™2,
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Methods

Human brain organoid slice recordings and preprocessing

The humanbrain organoids extracellular field recordings presentedin
Figs.1-4 were sourced fromref. 22. Organoids withless than20 active
units were not considered significant to reliably separate abackbone
and nonrigid population. Briefly, brain organoids were grownbased on
the methods developed in ref. 18 and were of predominant forebrain
identity based on the single-cell RNA sequencing analysis*. The record-
ings were made using CMOS MEA technology (MaxOne, MaxWell Bio-
systems) using MaxLab Live (version19.2.19). The electrode selection
was done based on the automatic activity scans (tiled blocks of 1,020
electrodes) to identify the spatial distribution of electrical activity
across the surface of the organoid. The 1,020 most active electrodes
were chosen with aminimal spacing distance of at least two electrodes
(2 x17.5 pm), providing sufficient electrode redundancy per neuron to
enable accurate identification of single units by spike sorting®’, while
simultaneously sampling network activity across the whole organoid
surface interfacing the MEA. Measurements were made in a culture
incubator (5% CO,at 37 °C) withasampling rate of 20 kHz for all record-
ings, and the datawere saved in HDF5 file format. The raw extracellular
recordings were band-pass filtered between 300 and 6,000 Hz and
subsequently spike sorted using the Kilosort2 algorithm®* through
a custom Python pipeline. The spike sorting output was then further
curated by removing units with an ISl violation threshold® above 0.3,
anaverage FR below 0.05 Hz and/or a signal-to-noise ratio below 5.

Whole human brain organoid recordings

Additional electrophysiology data from whole human brain orga-
noids (Fig. 7) were sourced from ref. 27 that made use of high-density
MEAs integrated into a six-well configuration (MaxTwo, MaxWell Bio-
systems). Whole organoids were attached to MEAs at 9.5 weeks old
and grown for 32 days. Recordings were performed using the same
methods in the previous section using MaxLab Live (version 22.2.6).
The organoids were grown from human iPSCs (NIBSC8 iPSC line) and
cultured in mTESR Plus medium on vitronectin and differentiated
into organoids based on a previously established protocol®. Neural
differentiation was induced with Neural Induction medium through
SMAD inhibition (Gibco) and organoids were differentiated under
gyratory shaking (88 rpm, 50-mm orbit) for up to 8 weeks in Neuroba-
sal Plus medium supplemented with 1x B27-Plus, 10 ng mI™ human
recombinant GDNF (GeminiBio), 10 ng mI" human recombinant BDNF
(GeminiBio), 1% penicillin-streptomycin-glutamine (Gibco, Thermo
Fisher Scientific). Half changes of medium were performed thrice a
week. See Supplementary Methods for additional details regarding
ESC maintenance, organoid generation, single-cell RNA sequencing
and immunohistochemistry characterization.

Murine ESC-derived cortical organoids

Organoids were generated from the following three distinct mouse
ESC lines: C57BL/6, E14TG2a (129/0la) and KH2 (129/Sv) x C57BL/6
hybrid). ESCs were dissociated into single cells using TrypLE Express
Enzyme (Thermo Fisher Scientific, 12604021) for 5 min at 37 °C. After
dissociation, the cells were re-aggregated in lipidure-coated 96-well
V-bottom plates at a density of 3,000 cells per well in 150 pl of mESC
maintenance medium, supplemented with 10 pM Rho Kinase Inhibi-
tor (Y-27632; Tocris, 1254) and 1,000 units ml™ Recombinant Mouse
Leukemia Inhibitory Factor (MilliporeSigma, ESG1107). After 24 h of
re-aggregation, the medium wasreplaced with cortical differentiation
medium (Supplementary Methods).

Daily medium changes were performed, with N-2 and B-27 sup-
plements added postfiltration to preserve their hydrophobic com-
ponents. On day 5, organoids were transferred to ultralow adhesion
plates (MilliporeSigma, CLS3471), where the medium was replaced
with fresh neuronal differentiation medium. The plates were then
placed onan orbital shaker set to 68 rpmto prevent organoid fusion. To

ensure optimal growth conditions, 16 organoids per well were consist-
ently maintained. Organoids were plated whole at an age of around 30
days and recordings started when consistent population bursts were
observed, in a similar manner as the human brain organoid slices as
described previously. Recordings were performed using MaxLab Live
(version 25.1.6; MaxWell Biosystems).

Neonatal murine brain-slice preparation
Allexperimentsinvolving murine neonatal acute slice recordings were
approved by the Basel-Stadt veterinary office according to Swiss federal
laws onanimal welfare. Animal housing was equipped with an artificial
light source providing a daylight-like spectrum. The light phase of
the dark/light cycle lasted from 6:30 a.m. to 6:30 p.m., with a 30-min
twilight period during both dark-to-light and light-to-dark transitions.
Ambient temperature was maintained at20-24 °C, and relative humid-
ity at 45-65%. Briefly, mouse pups (P12-P14; both sexes; C57BL/6JRj
from Janvier Labs) were decapitated under isoflurane anesthesia,
followed by brain dissection in ice-cold artificial CSF (aCSF) bubbled
with carbogen gas (95% O,, 5% CO,). To promote self-sustained cortical
activity”, the following aCSF recipe was used: 126 mMNaCl, 3.5 mMKClI,
1.25 mMNaH,PO,,1 mMMgSO,,2 mM CaCl,,26 mM NaHCO;and 10 mM
glucose, atapproximately pH 7.3 when bubbled with carbogen. Coro-
nal brain slices (370 pm) were prepared using a vibratome (VT1200S,
Leica).Slices were subsequently transferred to achamber submerged
in carbogenated aCSF and stored at room temperature until use.

Acute recordings from neonatal murine brain slices

For recordings, a brain slice containing somatosensory cortex was
transferred from the storage chamber onto the sensing area of the
CMOS MEA and fixated with a customized MaxOne Tissue Holder (Max-
Well Biosystems). The slice was perfused with heated aCSF (32-34 °C).
Recordings were performed using MaxLab Live (version 22.2.8; Max-
Well Biosystems). Sparse, rectangular electrode configurations were
selected to find active regions of the somatosensory cortex, with a
sparsity of two or three to allow for agood spike-sorting performance.

Primary planar culture preparation

The presented primary neuronal recordings (Pr) were sourced fromref.
28 for Pr1-Pr4 and from ref. 29 for Pr5-Pr8. Briefly, neuronal cultures
were prepared from embryonic day 18 Wistar rat cortices and plated at
adensity of 3,000 cells per mm?onto high-density CMOS MEAs (Max-
One, MaxWell Biosystems) and maintained in a cell culture incubator
(5% CO, at 37 °C)*. The recordings were made at 20 days in vitro. The
recordings can be obtained from https://www.research-collection.
ethz.ch/handle/20.500.11850/431730.

Comparing data from different sources

No statistical methods were used to predetermine sample sizes,
but our sample sizes are similar to those reported in previous
publications™* >, The recording durations of all recordings coming
from the same source were kept consistent. The recording durations
per datasource were selected so that each recording contained around
40 bursts (38 + 4 bursts, mean ts.e.), using the first x minutes of the
recording to get to this value.

Data distributions were assumed to be normal, but this was not
formally tested. Where distributions visually deviated from a normal
distribution, alog transformation was performed or the distribution was
modeled withageneralized linear model. Where data distributions con-
tained anumber of samples that were too large to be plotted individu-
ally, violin plots were used to report the shape of the distribution. Data
analyses were performed blindly to the conditions of the experiments.

Single-unit FR and CV2 calculations scores
All of the following analyses were performed using custom MATLAB
scripts. MATLAB (version R2018b) was used. The FR of eachindividual
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spike-sorted unit with atleast 30 detected spikesin the recording was
computed by obtaining the interspike interval between each spike
event and applying a Gaussian smoothing with a 50-ms kernel to its
inverse. Alognormal distribution was fitted to the distribution of FRs
averaged over the wholerecording period for each unit. The goodness
of the fit was assessed using the R> metric. In addition, for the same
selection of units, the CV2 score of the spiking activity was computed
per unitas described inref. 68 as a measure of spiking variability. The
same CV2 computations were performed on 100 different shuffled
spike matrices and the results from the original spike matrices were
z-score normalized using the mean and s.d. over all shuffled datasets.

Population rate calculations

The population FR was computed by summing spikes over all units of
eachframe, followed by smoothing with a20-ms sliding square window
andasubsequent 100-ms sliding Gaussian kernel. For the detection of
theburststart, end and peak, population activity bursts were defined
when the population-averaged spike rate exceeded 4x its root mean
square (r.m.s.) value (using the built-in MATLAB function findpeaks
with min_dist =700 ms. For recordings with long-duration bursts,
min_dist was increased up to 2,000 ms to prevent peaks in the tail of
the burst frombeing detected as separate burst instances). The burst
startand end times were determined as the first time points where the
multi-unit activity fellbelow 10% of the detected peak value, occurring
before and after the burst peaks, respectively. The actual burst peak
time was then obtained by recomputing the population FRusinga5-ms
square window and a 5-ms Gaussian kernel and finding the frame with
the highest value between the burst start and end time. For murine
primary planar cultures, a 20-ms square window, a 50-ms Gaussian
kernel and a3x r.m.s. threshold were used for population peak detec-
tion and a 20% threshold for the burst start and end time detection.
These values were chosen to account for stronger jitteriness of the
population activity and more abundant interburst activity.

FR sequences and burst backbones

For each individual unit, the FR centered by the burst peak was aver-
aged from-250 msto 500 msrelative tothe burst peak.Inaddition, the
timerelative to the population burst peak, when this unit experienced
apeakin its FR within the burst start and end window, was selected.
The median and variance of the FR peak times were computed per unit
over allburstsinwhich this unit fired at least two action potentials. The
medianvalues were used for reordering the units for different plotting
purposes and the variance was used to fit a linear mixed-effects model
tostudy therelationship between the effect of the relative position of
the peak (from 0 to1) on the variance of the peak.

Units that fired at least two action potentials in all the bursts in
arecording were defined as backbone units. For murine organoids
and cortical slices, a threshold of 80% and 90% of bursts was used,
respectively, because only a small fraction of units had at least two
action potentialsinall bursts (Supplementary Fig. 2a). Abackbone unit
sequence was defined by ordering all backbone units based on their
median FR peak time. For each sample, the burst backbone period was
defined as the average FR peak time of the earliest backbone unit until
the average FR peak time of the latest backbone unitin the sequence.
For different plotting purposes, the backbone period was rescaled
fromOtolanddataperorganoid were overlaid and averaged over the
rescaled backbone period for comparison.

Burst-to-burst FR correlations

For each unit, the FR wasrecomputed after removing all spikes that fell
outside of the burst windows. Next, this FR was selected from —250 ms
to 500 msrelative to eachindividual burst peak and a cross-correlation
was computed for the unit FR between each pair of bursts for each
individual unit (using the built-in MATLAB function ‘xcorr’ with max-
lag =10 ms and normalization = ‘coeff’). Only bursts with at least two

detected action potentials and units with atleast two spikesin atleast
30% of all bursts were considered for this analysis. Afterwards, the aver-
age over the maximum correlations for all the burst pairs with at least
two detected action potentials was computed per unit, yielding the
burst-to-burst correlation. The same computations were performed on
100 different shuffled spike matrices and the results from the original
spike matrices were normalized using the (A - B)/(A + B) strategy, where
Aisthe measured value and Bis the averaged value computed over the
100 shuffled datasets.

Inaseparate analysis, burst-to-burst correlations were computed
between bursts from two recordings from the same organoid slice at
4-hintervals. Average burst-to-burst correlations were computed for
pairs of bursts within each of the two same recordings, as well as for
pairsof bursts where one burst came from therecordingat 0 hand the
other burst from the recording at4 h.

Pairwise FR correlations

Using the same FR computed after removing spikes outside burst
windows, cross-correlations were computed between each pair of units
(using the built-in MATLAB function ‘xcorr’ with maxlag = 350 ms and
normalization = ‘coeff’, a maxlag of 350 ms was chosen because the
median backbone period over all samples except the murine primary
cultures was 348 ms). The rate for the whole recording was used. The
maximum correlation values for each unit pair were compared between
pairs of backbone units, pairs of one backbone and one nonrigid unit
and pairs of nonrigid units. The same computations were performed
on 100 different shuffled spike matrices and the results from the origi-
nal spike matrices were normalized using the (A - B)/(A + B) strategy,
where A is the measured value and B is the averaged value computed
over the 100 shuffled datasets. In addition, for all pairs of backbone
units, the lag time corresponding to the maximum correlation value
was compared to theaverage absolute lag time over all shuffled datasets
for the same unit pair.

Burst similarity score

Atevery framerelative to the burst peak, a vector containing the FRs for
each unit was obtained. For every pair of bursts, the cosine similarity
was computed between the vectors from the two different bursts. This
yielded a matrix with pairwise burst similarity values at every frame
relative to the burst peak. The average of this matrix was defined to
be the burst similarity score for that relative frame. This score was
computed for each frame from the earliest burst start time (relative
to the burst peak across all bursts) to the latest burst end time (also
relative to the burst peak across all bursts). The same computations
were performed on the spike matrices after shuffling.

Besides computing the burst similarity score over all units, burst
similarity scores were also computed for only a subset of units. In the
first case, these subsets consisted of all backbone units and all nonrigid
units, respectively. Subsequently, at each frame, the burst similarity
scoredistribution for all burst pairs was compared using a paired sam-
ple, two-sided t test (using the built-in MATLAB function ¢ test). In the
second case, these subsets consisted of units with an average correla-
tion value (‘Pairwise FR correlations’) in the top/bottom ith percentile,
whereiranged from 20 to 95. Subsequently, the difference between the
top and bottom ith percentile was quantified for this range as the sum
of the burst similarity score over all frames in the backbone period.
Thiswas doneto assess the burst similarity based only on highly/lowly
correlated units. Similarly, the burst similarity score distribution for all
burst pairs was compared between the top/bottom 20% of units and
all units using a paired sample, two-sided ¢ test.

PCA manifold analysis

The spike-rate matrix of an organoid with n units can be interpreted
as a set of points in n dimensional space, where each axis holds the
spike-rate trajectory of a specific unit. The PCs of this system are
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the directions in this space that capture the majority of the dataset’s
variance. A dimensionality reduction is achieved by linearly project-
ing the dataset onto these PCs. This transformation collapses the n
dimensional system to p dimensions where p < n, while preserving
the dominant patterns exhibited by the system. For this analysis, PCs
were computed via Eigen-decomposition of the covariance matrix, as
discussed further below.

Before the dimensionality reduction step, the FR datawere normal-
ized foreachunitindividually using the z-score method, which centers
the dataaround zero mean and unit s.d. The dimensionality reduction
was performed on the following three separate selections of units: all
units, backbone units only and nonrigid units only.

The cumulative sum of the variance explained per PC was com-
puted for the PCs ordered from high variance to low. For each record-
ing, the results for all units were subtracted from the results for
backbone units only and nonrigid units only. Negative values mean
that the cumulative sum of the variance explained by all units is larger
than for the subset of units and positive values mean that the cumula-
tive sum of the variance explained by all units is smaller.

Furthermore, the sum of the variance explained by thefirst three
PCs was computed and divided by the summed explained variance
of the first X PCs, where X is the lowest number of total PCs from the
three selections—all units, backbone and nonrigid. This was done to
account for differences in the total number of PCs per selection. This
value was computed for the original data and for 100 different shuffled
spike matrices and the results from the original spike matrices were
normalized usingthe (A — B)/(A + B) strategy, where A is the measured
value and Bis the averaged value computed over the 100 shuffled data-
sets. These scores were compared between the three selections and
between the different model types as described in ‘Statistical analyses
for model comparisons’.

Randomized recording

Randomization of single-unit spike times was performed based onthe
methods discussed in refs. 38,69 to preserve each neuron’s mean FR
as well as the population-averaged FR distribution. This is necessary
to avoid trivial differences that would arise simply by changes in the
mean FR of aneuron. Briefly, whenever analyses were performed ona
randomized recording, the randomization was done as follows (unless
stated otherwise): two separate units, A and B, were selected and two
separate frames,1and 2, were selected where A but not Bfired inframe
land Bbutnot A firedin frame 2. Next, the spikes from unit A to unit B
were switched between frames1and 2. The resulting spike matrix still
has anequal number of spikes per unit (same average FR) and an equal
number of spikes per frame (same population rate). This shuffling pro-
cedure was performed five times more often than there were spikesin
the spike matrix, resulting in each spike being shuffled an average of
tentimes. This method was applied to produce 100 different shuffled
spike matrices per original recording.

Statistical analyses for model comparisons

Statistical modeling was carried out in the R environment (version
4.2.1). Nested data were analyzed with linear mixed-effects models
(‘lmer’ function of the Ime4 R package’) with ‘organoid’ or ‘unit ID’ as
random effect. Non-nested data were analyzed with linear models (‘lm’
function). Right-skewed and heavy-tailed data were log-transformed
and analyzed with a linear model. Statistical significance for linear
mixed-effects models was computed with the ImerTest R package™
and the summary (type Il sums of squares) R function. Statistical
significance for linear models was computed with the summary R
function. When possible, model selection was performed accord-
ing to the experimental design. When this was not possible, models
were compared using the ‘compare_performance’ function of the
performance R package’, and model choice was based on a holistic
comparison of AIC, BIC, RMSE and R2. Model output was plotted with

the ‘plot_model’ (type="pred’) function of the sjPlot R package”. A
total of 95% confidence intervals were computed using the ‘confint’
R function. Post hoc analysis was carried out using the ‘emmeans’ and
‘emtrends’ functions of the ‘emmeans’ R package.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasupporting the findings of this study are available within the
article and its supplementary information. Raw and curated electro-
physiology recordings can be found here https://dandiarchive.org/
dandiset/001603.scRNA-seq datahave been deposited and are publicly
availablein the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/geo) with accession GSE290330.

Code availability

Spike sorting was performed in Python 3.6 using Spikelnterface
0.13.0 and previously published®®, which can be found at https://
github.com/Spikelnterface/spikeinterface. Custom code for electro-
physiology analysis is available at https://github.com/braingeneers/
Protosequences
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Extended Data Fig. 1| Backbone units occupy the tail of skewed firing rate
distributions. a, A histogram of the distribution of average firing rates for all
units in organoid 1. The majority of units have low average firing rates, while a
long tail in the distribution contains a small subset of units with high average
firing rates. A lognormal distribution is fitted to the histogram. The inset shows
the histogram for the logarithm of the average firing rates of the same organoid.
Anormaldistributionis fitted to the histogram. b, Normal distributions fit to
thelogarithm of the average firing rate per unit for the 8 different organoids.
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¢, The R?*values for the fitted normal distributions shown inb. R*= 0.97 + 0.04
(mean £ s.d.) across the 8 human brain organoids. Backbone neurons alone

are not well described by alognormal distribution. R? values are 0.45 + 0.30
across the 8 human brain organoids. d, The distribution of average firing rates
per organoid for backbone and non-rigid units separated. Red bars mark the
distribution medians. The backbone units populate the tail of the skewed average
firing rate distributions in all organoids. See Fig. 7a for statistical comparisons.
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Extended Data Fig. 2| Reproducible firing patterns in human brain organoids.
a, Raster plot visualization of single-unit spiking (blue dots) measured across
the surface of ahuman brain organoid slice fromref. 27 (HOS), positioned on top
of the same Maxwell Biosystems microelectrode array as used for the organoid
recordings included in the main Figs. 1-5. The population firing rate is shown

by the red solid line. Population bursts are marked by sharp increases in the
population rate. Burst peak events are denoted by local maxima (black dots)
thatexceed 4x r.m.s. fluctuations in the population rate. The shaded gray
regions denote the burst duration window as defined by the time intervalin
which the population rate remains above 10% of its peak value in the burst.

b, Theinstantaneous firing rate of single-unit activity froma after reordering.
The backbone units are plotted above the dashed line, while non-rigid units are
plotted below the dashed line. In each category, units are ordered based on their
median firing rate peak time relative to the burst peak, considered over all bursts
intherecording. ¢, The average burst peak-centered firing rate measured across
all burst events for the example recording of which partis shownina. The burst
peakisindicated by the dotted line. The unit order is the same as b. Please note
the progressive increase in the firing rate peak time relative to the burst peak,
aswellasaspread in the active duration for units having their peak activity later
intheburst. The average firing rate is normalized per unit to aid in visual clarity.

d, The distributions of the log of the average firing rate per unit, separated for
backbone and non-rigid units. All units from the four recordings mentioned in
ref.22 are pooled together and all units from the four recordings mentioned
inref. 27 are pooled together (P <1072° and P= 0.40, respectively, two-sided
linear mixed-effect model, n = 4 organoids each). e, The distributions of the
average burst-to-burst correlations per unit after average rate normalization,
separated for backbone and non-rigid units. All units from the four recordings
mentioned inref. 22 are pooled together and all units from the four recordings
mentioned inref. 27 are pooled together. Please note the significant difference
between backbone and non-rigid units present for both sets of recordings
(P=1x10""and P=0.0092, respectively, two-sided linear mixed-effect model,
n=4organoids each).f, The distributions of the pairwise correlations per unit
pair after average rate normalization, separated for backbone pairs, backbone
and non-rigid combinations and non-rigid pairs. All unit pairs from the four
recordings mentioned in ref. 22 are pooled together and all unit pairs from the
four recordings mentioned in ref. 27 are pooled together. Please note that only
the normalized correlation for backbone pairs are significantly larger than O for
bothsets of recordings (P=0.0001,0.145and 1; P=7 x10™,1and 1, respectively),
one-sided linear mixed-effect model, n = 4 organoids each).
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Extended DataFig. 4| Pharmacological modulation of excitatory and
inhibitory signaling impacts bursts and sequences. a, Raster plot visualization
of single-unit spiking (blue dots) measured across the surface of amurine
organoid (MO10), positioned on top of the same type of microelectrode array as
used for the recordingsincluded in the main figures. The population firing rate
isshown by the red solid line. Population bursts are marked by sharp increasesin
the population rate. The shaded gray regions denote the burst duration window
as defined by the time interval in which the population rate remains above 10% of
its peak value in the burst. Top: baseline recording. Middle: recording of the same
organoid using the same electrode configuration, after treatment with 10 uM
gabazine to inhibitinhibitory signaling by blocking GABA , receptors. Bottom:
recording of the same organoid slice using the same electrode configuration,
after blocking AMPA and NMDA receptors with bath application of NBQX (10 pM)
and R-CPP (20 pM) to inhibit components of excitatory synaptic transmission.

b, Number of detected population bursts for 5 different murine organoids
(MO010-14) under baseline conditions, after treatment with gabazine and after

10B 10G 11B 11G 12B 12G 13B 13G 14B 14G

treatment with NBQX and R-CPP. Please note that bursting disappears after

NBQX and R-CPP treatment reflected as a significant decrease inbursting
compared to baseline conditions (P < 0.001, two-sided linear mixed-effect model).
Meanwhile, the number of bursts increase after gabazine treatment (P < 0.05,
two-sided linear mixed-effect model). ¢, Fraction of bursts in which a unit fires
atleast 2 spikes for the 5 different murine organoids under baseline conditions
compared to the gabazine treatment. The fraction of bursts in which units are
active increases significantly after gabazine treatment (P <1077, two-sided linear
mixed-effect model). d, Normalized Spearman rank-order correlations comparing
the sequential order of backbone sequences for all burst pairs of 5 different
murine organoids (MO10-14) under baseline conditions and after treatment

with gabazine. Correlation scores are z-scored relative to shuffled spike matrices
such that values above O indicate a more consistent backbone sequence than

the shuffled data. Thereis a significant increase in backbone sequence order
similarity after treatment with gabazine (P <107, two-sided linear mixed-

effect model).
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Nature Neuroscience


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-025-02111-0

118 C1

Extended DataFig. 6 | Intrinsic activity in murine primary cultures resembles
organoids after shuffling. a, Raster plot visualization of single-unit spiking (blue
dots) measured across a2D murine primary culture fromref. 28 (Pr1) recorded on
ahigh-density microelectrode array. The population firing rate is shown by the
red solid line. Population bursts are marked by sharp increases in the population
rate. Burst peak events are denoted by local maxima (black dots) that exceed 4 x
r.m.s. fluctuationsin the population rate. The shaded gray regions denote the
burst duration window as defined by the time interval in which the population
rate remains above 10% of its peak value in the burst. b, The instantaneous firing
rate of single-unit activity from a after reordering. The backbone units are
plotted above the dashed line, while non-rigid units are plotted below the dashed
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line. Ineach category, units are ordered based on their median firing rate peak
time relative to the burst peak, considered over all bursts in the recording. ¢, The
average burst peak-centered firing rate measured across all burst events for the
example recording of which partis shownina. The burst peakis indicated by
the dotted line. The unit order is the same as b. Please note that the progressive
increasein the firing rate peak time relative to the burst peak, as well as aspread
inthe active duration for units having their peak activity later in the burst are
not present in the murine primary recording, similar to the organoid data after
shuffling as shown in Extended Data Fig. 5. The average firing rate is normalized
per unit toaid in visual clarity.
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Extended Data Fig. 7| Consistent results in brain slices from different animals.

a, Raster plot visualization of single-unit spiking (blue dots) measured across
the surface of amurine neonatal cortical slice from a different animal (M3S1)
dissected at P13, positioned on top of the same type of microelectrode array

as used for the recordings included in main Fig. 6. The population firing rate

is shown by the red solid line. Population bursts are marked by sharp increases
inthe populationrate. Burst peak events are denoted by local maxima (black
dots) that exceed 4x r.m.s. fluctuations in the population rate. The shaded gray
regions denote the burst duration window as defined by the time interval in
which the population rate remains above 10% of its peak value in the burst.
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b, The instantaneous firing rate of single-unit activity from a after reordering.
The backbone units are plotted above the dashed line, while non-rigid units are
plotted below the dashed line. In each category, units are ordered based on their
median firing rate peak time relative to the burst peak, considered over all bursts
intherecording. c, The average burst peak-centered firing rate measured across
all burst events for the example recording of which part is shownina. The burst
peakisindicated by the dotted line. The unit order is the same as b. Please note
the progressive increase in the firing rate peak time relative to the burst peak, as
well asaspread in the active duration for units having their peak activity later in
the burst. The average firing rate is normalized per unit to aid in visual clarity.
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Extended Data Fig. 8| Backbone sequences observed during spontaneous
population bursts in murine cortical organoids. a, Raster plot visualization of
single-unit spiking (blue dots) measured across the surface of amurine organoid
(MO1) recorded at 42 DIV, positioned on top of the same type of microelectrode
array as used for the recordings included in the main figures. The population
firing rate is shown by the red solid line. Population bursts are marked by sharp
increases in the population rate. Burst peak events are denoted by local maxima
(black dots) that exceed 4x-r.m.s. fluctuations in the population rate. The shaded
gray regions denote the burst duration window as defined by the time interval in
which the population rate remains above 10% of its peak value in the burst.

b, Theinstantaneous firing rate of single-unit activity from panel a after
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reordering. The backbone units are plotted above the dashed line, while
non-rigid units are plotted below the dashed line. In each category, units are
ordered based on their median firing rate peak time relative to the burst peak,
considered over all bursts in the recording. ¢, The average burst peak-centered
firing rate measured across all burst events for the example recording of which
partisshownina. The burst peakisindicated by the dotted line. The unit order
is the same as b. Please note the progressive increase in the firing rate peak time
relative to the burst peak, as well as a spread in the active duration for units
having their peak activity later in the burst. The average firing rate is normalized
per unit toaid in visual clarity.
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groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size for organoid and primary culture recordings were determined by the data available in Sharf et al. and Alam El Din et al. Murine
organoids were set by the number of available organoids. Acute murine slice recordings were set by the number of available pups.

Data exclusions  Due to intrinsic neurophysiological variability occurring during brain organoid development, organoids exhibited a range in the number of
active spiking units. Organoids with less than 20 units were not considered for recordings in the murine, Sharf et al. and Alam El Din et al.
data. In order to compare the same number of burst events across all samples the first x minutes of the recordings were used so each
recording had a similar number of burst events.

Replication All experiments were performed with sufficient biological replicates across biological models. Additionally, experimental approaches are
documented with sufficient detail for precise replication.

Randomization  Single-unit spike times were randomized to preserve both each neuron’s mean firing rate and the population-averaged firing rate distribution.
The resulting spike matrix contained an equal number of spikes per unit (same average firing rate) and per frame (same population rate). For
murine cortical brain slice experiments, neonatal pups of both sexes were selected at random, and slices from the somatosensory cortex were
chosen randomly prior to acute electrophysiology. Murine cortical organoids were also selected randomly for electrophysiological recordings.

Blinding Human and murine brain organoids and murine cortical slices were grown or prepared in separate laboratories, so sample collection could not
be blinded. Data analyses were performed blind to the conditions of the experiments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies [ ] chip-seq

Eukaryotic cell lines [ ] Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
[] Clinical data

[ ] Dual use research of concern

[] Plants

XNXXOXOOS

Antibodies

Antibodies used Primary antibodies used for murine organoids: rabbit anti-Map2 (Proteintech # 17490-1-AP, 1:2000); mouse anti-Pax6 (BD
Biosciences # 561462, 1:100); rabbit anti-Nkx2.1 (Abcam # ab76013, 1:400); rat anti-Ctip2 (Abcam # ab18465, 1:250); rabbit anti-
Brn2 (Thermofisher # PA530124, 1:400); anti-Gaba (Thermo Fisher Scientific # PA5-32241, 1:375). Secondary antibodies were of the
Alexa series (Thermo Fisher Scientific), used at a concentration of 1:750. Nuclear counterstain was performed using 1.0 ug/ml
Hoechst 33342 (Thermofisher # H1399)

>
QD
Y
(e
=
)
§o;
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
(e
=
S}
Q
<L

Primary antibodies used for human organoids: mouse anti-Gephyrin(Synaptic Systems #147 011, Monoclonal Mouse IgM Clone
mAb7a,1:1000); chicken anti-MAP2 (Invitrogen #PA1-10005,1:5000), rabbit anti-GFAP (Dako #20334, 1:400); mouse anti-O4 (R&D
#MAB1326,Monoclonal Mouse I1gM Clone # 04, 1:200)

Validation Antibodies used for murine cortical organoids:
MAP2 (Proteintech 17490-1-AP): Microtubule-associated protein 2 (MAP2) is a tubulin binding protein regulating the spacing and
stability of microtubules and contributing to elongation of dendrites. MAP2 has multiple isoforms that arise from alternative splicing
(PMID: 3121794, 7854050, and 10383434). They are classified into two groups - MAP2A and MAP2B, which are known as high
molecular weight (HMW) isoforms, run as ~280 kDa species, while low molecular weight (LMW) isoforms MAP2C and MAP2D are
around ~70 kDa. MAP2 proteins are heavily phosphorylated, which contributes to a large discrepancy between their predicted and
observed molecular weight in SDS-PAGE (220 vs 280 kDa for HMW forms). In neurons, MAP2 proteins are found in the cell body and
dendrites, where they associate with microtubules, while they can also be present in the nuclei of testicular cells.
Tested Reactivity: human, mouse, rat
Host / Isotype: Rabbit / 1gG
Class: Polyclonal
Calculated Molecular Weight: 200 kDa
Observed Molecular Weight: 280 kDa, 70-85 kDa
Purification Method: Antigen affinity purification

Pax-6 (BD Biosciences 561462): Pax-6 is a member of the paired box (pax) gene family whose protein products are transcription
factors involved in development. Pax family members share a highly conserved DNA binding domain that contains six alpha helices
(paired domain) and a homeo box domain. Pax-6 has important roles in the development of the eye, nose, central nervous system,
and pancreas. Tissue culture supernatant is purified by either protein A/G or affinity purification methods. Both methods yield
antibody in solution that is free of most other soluble proteins, lipids, etc. This format provides pure antibody that is suitable for a
number of downstream applications including: secondary labeling for flow cytometry or microscopy, ELISA, Western blot, etc.
Reactivity: Human (QC Testing)

Isotype: Mouse BALB/c IgG2a, k

Clone: 018-1330

Immunogen: Human Pax-6 aa 406-422 Peptide

Molecular Weight: 46-48 kDa

Nkz2.1 (abcam ab76013): Nkx2.1 is a transcription factor with a molecular mass of approximately 38 kDa. It plays a significant role in
regulating gene expression. This target is mainly expressed in tissues such as the thyroid lung and the brain.

Host species: Rabbit

Clonality: Monoclonal

Clone number: EP1584Y

Isotype: IgG

Reacts with: Mouse, Rat, Human

Purification technique: Affinity purification Protein A

Observed Molecular Weight: 40 kDa

CTIP2 (Abcam ab18465): CTIP2, also known as BCL11B, is a transcription factor crucial in neuro research for its role in neural
development and differentiation. It is particularly important for the development of medium spiny neurons (MSNs) in the striatum,
which are essential for motor control and are affected in conditions like Huntington's disease. CTIP2 regulates gene expression
involved in neuronal differentiation, axon guidance and synaptic connectivity, making it vital for understanding the cellular
architecture and function of the nervous system.

Isotype: IgG2a

Host species: Rat

Clonality: Monoclonal

Clone number: 25B6

Purification technique: Multi-step chromatography

Specificity: Detects 2 bands representing Ctip2 at about 120kD. Ctip2 is highly expressed in brain and in malignant T-cell lines derived

£zoz |udy




from patients with adult T-cell leukemia/lymphoma
Predicted band size: 96 kDa
Observed band size: ~¥100 kDa

Brn2 (Thermofisher PA530124): This gene encodes a member of the POU-III class of neural transcription factors. The encoded
protein is involved in neuronal differentiation and enhances the activation of corticotropin-releasing hormone regulated genes.
Overexpression of this protein is associated with an increase in the proliferation of melanoma cells.

Species Reactivity:Chimpanzee, Human, Mouse, Non-human primate, Rat

Host/Isotype: Rabbit / 1gG

Class: Polyclonal

Immunogen: Recombinant protein encompassing a sequence within the C-terminus region of human Brn2.

Purification: Antigen affinity chromatography

Gaba (Thermo Fisher Scientific PA5-32241): This chemical acts as a neurotransmitter in the central nervous system. It reduces
neuronal excitation and regulates muscle tone.

Species Reactivity: Chemical, Human, Mouse

Host/lIsotype:Rabbit / 1gG

Class: Polyclonal

Immunogen: GABA.

Purification: Antigen affinity chromatography
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Antibodies used for human brain organoids:

Gephyrin (Synaptic Systems 147 011): Gephyrin is a scaffolding protein associated with inhibitory neurotransmitter receptors
Clone: mAb7a

Subtype: 1gG1 (k light chain)

Immunogen: Nativ Protein corresponding to AA 1 to 768 from rat Gephyrin

Epitop: AA 264 to 276 from rat Gephyrin

Reactivity: human, rat, mouse, pig, goldfish, zebrafish, chicken

Specificity: Specific for the brain specific 93 kDa splice variant phosphorylated at Ser-270. validated PubMed: 9812897

MAP2 (Invitrogen PA1-10005): MAP2 (Microtubule Associated Protein 2) exists in two high molecular weight forms (MAP2a &
MAP2b) and a low molecular weight form. The expression of MAP2 is developmentally regulated and its multiple forms arise by
alternative splicing of a single gene. MAP2 is involved in microtubule assembly, which is an essential step in neurogenesis. The
products of similar genes in rat and mouse are neuron-specific cytoskeletal proteins that are enriched in dendrites, implicating a role
in determining and stabilizing dendritic shape during neuron development.

Species Reactivity: Human, Mouse, Rat

Published species: Human, Mouse, Pig, Rat

Host/Isotype: Chicken / IgY

Class: Polyclonal

Immunogen: Mix of recombinant human constructs of projection domain sequences, amino acids 235-1588.

Western blot was performed using Anti-MAP2 Polyclonal Antibody (Product # PA1-10005) and a 160 kDa band corresponding to
MAP2 was observed across Mouse Brain and Rat Brain and not in Mouse Heart and Mouse Skeletal Muscle.

Observed Molecular Weight: ~160 kDa

GFAP (Dako Z0334): GFAP (Glial Fibrillary Acidic Protein) is a key marker in neuro research, particularly for its role in identifying
astrocyte activity. It is predominantly expressed in astrocytes, the most abundant glial cells in the brain and spinal cord.

Clone: polyclonal

Immunogen: GFAP isolated from cow spinal cord

Species: Rabbit Anit-

Specificity: The antibody has been solid-phase absorbed with human and cow serum proteins. In crossed immunoelectrophoresis
using 50 pL antibody per cm?2 gel area, no reaction with 2 uL human plasma and 2 pL cow serum is observed. The antibody shows
one distinct precipitate (GFAP) with cow brain extract. Staining: Coomassie Brilliant Blue. In indirect ELISA, the antibody shows no
reaction with human plasma and cow serum. GFAP shows 90-95% homology between species, and as demonstrated by
immunohistochemistry, the antibody reacts strongly with human GFAP.

04 (R&D MAB1326): Oligodendrocyte Marker O4. Oligodendrocytes are myelinating cells in the central nervous system (CNS) and
form the myelin sheath of axons to support rapid nerve conduction. Oligodendrocyte Marker O4 is an antigen on the surface of
oligodendrocyte progenitors (1, 2). It has been commonly used as the earliest recognized marker specific for the oligodendroglial
lineage Species Reactivity: Human/Mouse/Rat/Chicken

Specificity: Detects human, mouse, rat, and chicken Oligodendrocyte Marker O4.

Source Monoclonal: Mouse IgM Clone # 04

Purification: IgM-specific Affinity-purified from hybridoma culture supernatant

Immunogen: Bovine brain corpus callosum white matter

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Three mouse embryonic stem cell lines were used: (1) C57BL/6 genetic background (BRUCE-4 ES Cells; Millipore Sigma); (2)
E14TG2a (ATCC deposited by T. Doetschman), and (3) KH2 (Jaenisch; https://doi.org/10.1002/gene.20180).
Two human iPSC lines used: (1) F12442.4 (Karch; https://doi.org/10.1186/s13195-018-0400-0); (2)NIBSC8 (National Institute
for Biological Standards and Control, NIBSC, UK).
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Authentication

Mouse ESCs were characterized using standard methods, and validated using gPCR and immunohistochemistry to assess
pluripotency and correct cell type patterning. Additional single cell and bulk RNA sequencing was performed to authenticate
pluripotency and correct cell type patterning of our organoids. Human iPSC line 1 was analyzed for pluripotency markers and
chromosomal abnormalities by G-band karyotyping and were confirmed to possess the appropriate genotype by Sanger
sequencing. Human iPSC line 2 was analyzed for genetic stability every 10 passages using the gPCR-based hPSC Genetic
Analysis kit (StemCell Technologies™) and authenticated by Short Tandem Repeat profiling.

Mycoplasma contamination Mycoplasma testing was routinely performed on our ESCs, iPSCs and organoids and all tested negative

Commonly misidentified lines  No commonly misidentified cell lines were used.

(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research
Laboratory animals
Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

mouse C57BL/6JRj from Janvier Labs (P12-14; both sexes)
n/a

Neonatal cortical slices were used from both sexes. We do not consider sex as a factor in our analyses, but results apply to all
animals studied.

No field collected samples were used in the study

All experiments involving murine neonatal acute slice recordings were approved by the Basel-Stadt veterinary office according to
Swiss federal laws on animal welfare.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks

Novel plant genotypes

Authentication

n/a

n/a

n/a
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