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Neuronal firing sequences are thought to be the building blocks of 
information and broadcasting within the brain. Yet, it remains unclear when 
these sequences emerge during neurodevelopment. Here we demonstrate 
that structured firing sequences appear in spontaneous activity of human 
and murine brain organoids, both unguided and forebrain identity directed, 
as well as ex vivo neonatal murine cortical slices. We observed temporally 
rigid and flexible firing patterns in human and murine brain organoids 
and early postnatal murine somatosensory cortex, but not in dissociated 
primary cortical cultures. These results suggest that temporal sequences 
do not arise in an experience-dependent manner, but are rather constrained 
by a preconfigured architecture established during neurodevelopment. By 
demonstrating the developmental recapitulation of neural firing patterns, 
these findings highlight the potential of brain organoids as a model for 
neuronal circuit assembly.

A growing body of experimental evidence supports the notion that 
intrinsic activity has a central role in brain function, challenging the 
traditional Jamesian view that higher-order function is an emergent 
product of sensory input1. The mesoscale wiring of the cortex is domi-
nated by recurrent, lognormally distributed networks2, where only a 
small fraction of connections directly relay sensory input3. This skewed 
organization is thought to support the ability of neuronal assemblies to 
generate temporally structured spiking sequences4–6. Sequential activ-
ity patterns represent discrete and temporally consolidated packets of 
neuronal activity, considered the basic building blocks of neural coding 
and information broadcasting within the brain7. In mature brain cir-
cuits, spiking sequences predict spatial navigation and memory in the 
murine hippocampus8, where ‘preplay’ encodes new experiences from 

pre-existing sequence motifs9,10 that arise before experience-dependent 
representations form (for example, before exploration beyond the 
nest)11. In the murine visual cortex, evoked responses closely mirror 
spontaneous sequential patterns12. Similar phenomena have also been 
reported in the human cortex, where the replay of sequences under-
lies episodic memory formation and retrieval13. Moreover, spiking 
sequences in the human cortex organize into a temporal backbone 
of rigid and flexible sequence elements that are stable over time and 
cognitive states14, support visual categorization tasks and encode non-
redundant information beyond latency and rate encoding15.

However, the emergence of spiking sequences during develop-
ment is not yet well-understood. During the third postnatal week, 
the murine hippocampus generates spiking sequences that resemble 
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durations spanning timescales on the order of ~102 ms (Fig. 1d and 
Supplementary Fig. 1c). A majority of units’ FRs peaked in a close prox-
imity to the population burst maxima (Fig. 1e). These timescales align 
with spontaneous and evoked sequences in the murine4 and reptile 
cortex5, as well as during memory retrieval in the human cortex13,14. 
Moreover, the dominant neuronal response time of sensory cortices 
peaks with similar constants across regions and species30,35,36, suggest-
ing a conserved temporal motif in cortical computation.

To assess stereotypy, we separated units into two classes. Back-
bone units were defined as those spiking in every burst (Fig. 2a, above 
dashed line), while all other units were defined as nonrigid (Fig. 2a, 
below dashed line). Backbone units, residing in the high-firing tail of 
the lognormal distribution (Extended Data Fig. 1d), displayed stable 

those that will later be produced during navigation in a linear environ-
ment11. Notably, these sequences emerge in an experience-independent 
manner and do not improve upon additional experience in the same 
postnatal week. Whether similar spiking sequences, potentially rep-
resenting other forms of experience, exist in other brain areas or at 
earlier developmental stages remains an open question. The exist-
ence of such sequences would provide strong evidence in support of 
the notion that spiking sequences are not experience-dependent but 
are instead constrained by an innate architecture that is established 
during neurodevelopment16.

Brain organoids, three-dimensional (3D)-stem cell-derived models 
of the mammalian brain that recapitulate key facets of the anatomi-
cal organization and cellular composition found in the developing 
brain17–19, represent an ideal system for examining intrinsic (that is, 
sensory-independent) aspects of neurophysiological development. 
Neurons within brain organoids form functional synapses19 and estab-
lish spontaneous network activity20,21. These self-organized neuronal 
systems contain cellular diversity and cytoarchitecture necessary to 
sustain complex network dynamics22 as evidenced by the expression of 
layer-specific excitatory pyramidal neurons and inhibitory GABAergic 
interneurons23,24. Brain organoids also generate local field potential 
oscillations that mirror preterm EEG patterns25, and have been used 
to model network dynamics associated with rare genetic disorders26.

Here we analyzed single-unit activity from the following four 
models of brain development: (1) human induced pluripotent stem cell 
(iPSC)-derived brain organoids from two independent laboratories22,27, 
(2) mouse embryonic stem cell (ESC)-derived cortical organoids of 
dorsal forebrain identity, (3) ex vivo neonatal murine somatosensory 
cortex slices and (4) dissociated two-dimensional (2D) primary cortical 
cultures28,29. Across all models, we observed bursting dynamics on the 
order of 102 ms, consistent with biophysical integration time constants 
that extend beyond single-neuron refractoriness30,31. Within organoids 
and neonatal slices, a subpopulation of neurons generated nonrandom 
sequential firing patterns, referred to as backbone sequences14, which 
were absent in 2D primary cultures. Backbone sequence-generating 
neurons occupied the tails of right-skewed lognormal firing rate (FR) 
and connectivity distributions. At the population level, activity par-
titioned into low-dimensional subspaces delineated by temporally 
rigid sequences and higher-dimensional subspaces containing more 
flexible units. Finally, for a stable and flexible computation, theory sug-
gests that neural systems must exist near a regime called ‘criticality’, 
characterized by scale-invariant dynamics across timescales32. Using 
temporal renormalization group theory33, we found that organoids, 
slices and 2D cultures operate near criticality, with subsets exhibiting 
correlations spanning multiple timescales. These results suggest that 
brain organoids recapitulate preconfigured, experience-independent 
sequence dynamics while maintaining near-critical states, providing 
insight into organizational principles that underlie the neural code34.

Results
Temporal dynamics of neuronal firing sequences in brain 
organoids
Using high-density complementary metal-oxide-semiconductor 
(CMOS)-based microelectrode arrays (MEAs)22, we investigated the 
temporal dynamics of the spontaneous neuronal activity across guided 
and unguided human and murine brain organoids. Single-unit spike 
events revealed population bursts lasting several hundred milliseconds, 
followed by quiescent periods up to several seconds (Fig. 1a). Moreo-
ver, we observed that the distribution of FRs follows a heavy-tailed, 
right-skewed lognormal distribution (n = 8, R2 = 0.97 ± 0.04; 
Extended Data Fig. 1a–c). This represents one facet of functional activity 
conserved across brain regions and states in vivo3.

Reordering single units by the timing of their peak FR revealed 
sequential activation patterns during bursts (Fig. 1b). Bursts 
exhibited consistent rate profiles within organoids (Fig. 1c), with 
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Fig. 1 | Temporal structure of spontaneous single-unit neuronal firing patterns 
during population bursts in human brain organoids. a, Raster plot of single-
unit spiking (black dots) measured across the surface of a 500-μm-thick human 
brain organoid slice, positioned on top of an MEA. The population FR is shown 
by the red solid line. Population bursts are marked by sharp increases in the 
population rate. Burst peak events are denoted by local maxima that exceed 4× 
r.m.s. fluctuations in the population rate. The shaded gray regions denote the 
burst duration window as defined by the time interval in which the population 
rate remains above 10% of its peak value in the burst. b, Top: the instantaneous 
FR of single-unit activity from a. Bottom: zoomed-in view of the neuronal firing 
during population bursts reveals temporal segregation and contiguous tiling 
of the peak FR of single-unit activity. Here the subsets of units that fire at least 
twice during the burst are shown, re-ordered for each burst individually based 
on the time at which the unit has its maximum FR during the burst period. c, 
The population FR (gray lines) is plotted relative to the burst peak for 46 burst 
events measured across a 3-min interval for the same organoid. The mean value is 
shown by the solid line and the dashed lines represent 1 s.d. d, Burst durations are 
plotted from four different organoids. e, The distribution of single-unit FR peak 
times relative to population burst peaks for the same organoids as in d. Box plots 
(d,e)—boxes span the 25th–75th percentiles; the centerline marks the median 
(50th). Whiskers extend to the most extreme values within 1.5× the interquartile 
range of the quartile 1 and quartile 3. In violin plots, minima and maxima equal 
the lowest and highest observations; the shaded area shows the variable’s 
probability density.
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Fig. 2 | Sequential activation patterns in human brain organoids generate a 
stereotyped temporal backbone. a, Single units were divided into backbone 
and nonrigid units. Backbone units, defined as spiking at least twice in every 
burst, are plotted above the dashed line; nonrigid units are below. Within 
each group, units are ordered by their median firing peak time relative to the 
burst peak across all bursts and referred to as unit ID. b, Zoomed-in view of the 
backbone units across four bursts with the same unit order. c, Average burst 
peak-centered FRs from 46 burst events. Units maintain the same order in a and 
b. Please note the progressive shift in firing peak times relative to the burst peak 
and an increased spread of activity for units peaking later. d, Spiking activity of 
three units is plotted over a fixed time window relative to burst event peaks. Rows 
represent spikes from a single burst. Two backbone units are shown with strong 
temporal alignment to the burst peak and one nonrigid unit with poor alignment. 
Heatmaps of burst-to-burst cross-correlation coefficients of the burst-centered 

FRs from the units. e, Backbone neurons consistently exhibited higher burst-to-
burst correlation coefficients compared to nonrigid units (P < 10−16, two-sided 
linear mixed-effects model, n = 4 organoids and 507 single units). Box plots—
boxes span the 25th–75th percentiles; the centerline marks the median (50th). 
Whiskers extend to the most extreme values within 1.5× the interquartile range 
of the quartile 1 and quartile 3. In violin plots, minima and maxima equal the 
lowest and highest observations; the shaded area shows the variable’s probability 
density. f, FR peak times relative to burst peaks for backbone units. Black dots 
mark individual bursts, and red shading indicates the probability distribution.  
g, Variance of relative firing peak times for backbone units across four organoids. 
Units are ordered by median peak time, showing significantly greater variability 
in later-firing neurons (P = 1 × 10−6, two-sided linear mixed-effects model for 
relation between relative FR peak and peak time variance). The line represents 
the mean and the shaded area represents the 95% confidence interval.
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temporal delays across bursts (Fig. 2b,c and Extended Data Fig. 2). 
Clustering bursts by their pairwise correlation matrix confirmed that 
backbone patterns were preserved across clusters, whereas non-
rigid units varied significantly (P < 10−20, linear mixed-effects model; 
Extended Data Fig. 3). Longitudinal recordings showed that the 
relative fraction of backbone units declined over development 
(Supplementary Fig. 2). This transition parallels the in vivo incorpo-
ration of inhibitory interneurons into maturing excitatory networks37, 
also observed histologically in the human (Supplementary Figs. 3 
and 4) and murine organoids (Supplementary Figs. 5–7).

To further test the impact of inhibitory tone on backbone neurons, 
we administered gabazine (10 μM) through bath application to block 
GABAA receptors in murine cortical organoids. Gabazine increased 
burst frequency, backbone participation and their rank-order statis-
tics relative to control conditions. In contrast, blocking AMPA (10-µM 
NBQX) and NMDA (20-µM R-CPP) receptors, inhibiting excitatory syn-
aptic transmission, abolished bursts, consistent with prior work22 and 
eliminated sequences (Extended Data Fig. 4). These findings highlight 
the dual role of excitation and inhibition in shaping spike timing and 
sequence rigidity.

To quantify firing consistency during spontaneous bursts, we 
analyzed single-unit activity relative to the burst peak, following 
methods used in vivo4. Some units displayed sharp peaks with narrow 
jitter (Fig. 2d, left), others showed delayed but consistent responses 
(middle), while many lacked preference and fired irregularly (right). 
Backbone units, comprising 28% ± 14% (mean ± s.d.) of total neurons 
(n = 8 organoids; Supplementary Fig. 1), displayed significantly higher 
burst-to-burst correlations (Fig. 2e). Their firing patterns remained 
stable across hours (Supplementary Fig. 8) and persisted over months, 
with correlations increasing during development in both human and 
murine organoids (Supplementary Fig. 2c; P < 10−5, two-way analysis of 
variance). Randomized spike trains that preserved mean and single-unit 
FRs abolished sequences and substantially reduced burst-to-bust cor-
relations (Extended Data Fig. 5 and Supplementary Figs. 9 and 10). 
This resembled 2D primary cultures with randomized architectures 
that also lacked sequential firing (Extended Data Fig. 6). Finally, the 
variability of firing peak times increased with their average latency 
(Fig. 2f), a relationship consistently observed across organoids (Fig. 2g; 
P < 10−5, linear mixed-effects model). These results indicate that brain 
organoids can support stereotypical sequential activation with variable 
dynamics that mirror the propagation of spontaneous activity within 
the cortical mantle in vivo4,5,13.

Backbone units are a highly correlated ensemble
To quantify firing patterns during spontaneous bursts, we examined 
pairwise correlations of single-unit FRs. Backbone units generated 
stereotyped activation sequences that were preserved across bursts 
(Fig. 3a). Our analysis of sequential co-activation showed consistent 
firing onsets and peak times with average phase lags of ~10 ms (Fig. 3b; 
example units a to b = 5 ms, example units b to c = 7 ms), as well as 
longer lags spanning hundreds of milliseconds between backbone 
pairs due to the recurring sequential activity (Supplementary Fig. 11). 
Cross-correlation analysis revealed that backbone units formed a highly 
correlated ensemble with nonzero phase lags (Fig. 3c,d). Correlation 
coefficients were significantly higher in backbone compared to non-
rigid units (Fig. 3e) and occupied the tail of lognormal distribution 
(Fig. 3f and Supplementary Fig. 12c–e). Together, these results suggest 
that a minority population of high-FR neurons is strongly tuned to 
population dynamics and functions as a stopwatch in the backbone 
among the more rigid units of the population.

Population FR timing across burst epochs
In previous sections, we analyzed pairwise single-unit relationships. We 
then asked whether FRs were temporally structured at the population 
level during bursts. By calculating the cosine similarity of instantaneous 

FRs across bursts, we observed a sharp similarity peak coinciding with 
backbone activation, followed by a plateau and decay after burst termi-
nation (Fig. 4a,b). Variance in similarity showed the opposite trend—it 
was high during nonbursting periods, rapidly declining at burst onset 
and remaining low until bursts ended (Fig. 4c).

Separating units revealed that backbone ensembles displayed sub-
stantially higher similarity than nonrigid units or shuffled data (Fig. 4d). 
Notably, the top 20th percentile of highly correlated units (Fig. 3c) 
generated substantially higher burst similarity than the full popula-
tion, with the effect diminishing as larger percentiles were included 
(Supplementary Fig. 13a,c). Conversely, the lowest 20th percentile 
reduced similarity, with differences shrinking as more weakly corre-
lated units were added (Supplementary Fig. 13b,c). Across organoids, 
burst similarity increased at backbone onset and plateaued during 
their activation (Fig. 4e and Supplementary Fig. 13d; n = 8 organoids), 
underscoring the temporal stability backbone ensembles provide 
across bursts.

We then examined firing trajectories with principal component 
analysis (PCA). Burst-related trajectories occupied conserved paths 
in principal component (PC)-space aligned to burst timing (Fig. 4f, 
left). When populations were divided, backbone units captured far 
more variance (73%) in the first two PCs compared to nonrigid units 
(25%; Fig. 4f, middle and right, Fig. 4g and Supplementary Figs. 14 and 
15). Thus, backbone ensembles define a low-dimensional subspace, 
while nonrigid units exhibit irregular, higher-dimensional dynam-
ics requiring more PCs. Notably, randomization preserving both 
population and single-unit mean rates abolished these trajectories 
(Extended Data Fig. 5), demonstrating that structured temporal cor-
relations are not explained by mean FRs alone.

Revealing temporal structure with a hidden Markov model
We previously demonstrated that functional connectivity in human 
brain organoids follows a heavy-tailed distribution22, consistent with 
scaling rules observed in cortical circuits2. These motifs are thought 
to underlie spontaneous activity that propagates broadly across the 
cortical mantle, mirroring sensory-evoked responses in vivo4,7. To fur-
ther probe this repertoire of dynamics, we applied a hidden Markov 
model (HMM).

Single-unit activity was binned into 30-ms intervals, capturing 
fast electrophysiological timescales typical of cortical circuits (~10 
to 50 ms)30, and the HMM was stable over this variable time window 
(Supplementary Fig. 16). The HMM clustered the data into discrete 
states, each representing a linear combination of single-unit firing 
patterns occurring together within bursts. The state transitions are 
visualized as shaded raster plots aligned closely with burst trajecto-
ries (Fig. 5a). Heatmaps of unit firing and histograms of average rates 
revealed distinct manifolds of activity delineated by differential gain 
and attenuation across units associated for each state (Fig. 5b). While a 
20-state model was used for visualization, similar results were obtained 
across a range of hidden state counts (Supplementary Fig. 17). Notably, 
randomized data preserving mean unit and population rates38 yielded 
lower log-likelihoods (Supplementary Fig. 18), confirming that the 
transitions in real data reflected meaningful structure rather than trivial 
differences explained by the mean rate. The analysis of transitions 
showed that firing states represent both increases and decreases in rela-
tive unit activity (Fig. 5b). Low-probability states appeared before the 
burst peak, rapidly converged into high-probability transitions at and 
immediately after the peak, and then relaxed back to low probabilities 
per unit time (Fig. 5c). This narrowing effect in state space may establish 
a sequential arrow of time, where initial states preserve more precise 
timing relative to the following states (Supplementary Fig. 19). As 
bursts attenuated, the number of states broadened again. The number 
of realized states during bursts remained similar over a variable range of 
hidden states, an effect consistent across different hidden state counts 
(Supplementary Fig. 20), highlighting the robustness of the model.
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We then asked how these states mapped onto backbone versus non-
rigid units. Backbone ensembles spanned a larger pool of HMM states 
than nonrigid units (Fig. 5d and Supplementary Fig. 21). The PCA of state 
versus unit realizations revealed separability between these groups by 
hidden state structure (Fig. 5e). Linear support vector machine classi-
fiers trained on hidden state features distinguished backbone from 
nonrigid units with 83.9% ± 12.0% accuracy, significantly exceeding 
the 63.2% ± 10.4% achieved when using FR alone (Fig. 5f). Together, 
these findings highlight that spontaneous bursts in brain organoids are 
composed of ensembles, linked together in time to establish neuronal 
manifolds with temporal structure not observed in randomized data 
(Supplementary Fig. 22). These manifolds represent a latent multidi-
mensional space of temporally rigid and flexible neuronal subpopula-
tions whose probabilistic trajectories are Markovian in time, namely, 
future states depend on the system’s current state. Such dynamics 
align with recent experimental and computational models proposing 
that local pairwise correlations drive irreversibility in noisy logical 

computations, which contribute to a local arrow of time and generate 
an irreversible Markovian process independent of sensory input39.

Endogenous sequences in early developing neonatal cortex
We then asked if spiking sequences also emerge in early developing 
cortical circuits. Sequential activity patterns are crucial components 
of mature brain function7 and support early navigational tasks11, yet 
it is not known whether such patterns are present before eye opening 
and exploration occurs. To address this question, we performed acute 
extracellular recordings from coronal slices of neonatal murine soma-
tosensory cortex. We observed alternating periods of quiescence and 
abrupt, synchronized burst events resembling those described in vivo 
(n = 6 slices; Fig. 6a and Extended Data Fig. 7). At this stage, cortical 
activity is discontinuous, alternating between bursts and quiescent 
periods, and spike trains are highly correlated37. With the exception of 
olfaction, which controls cognitive maturation40, most sensory systems 
remain underdeveloped.
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We then quantified the consistency of firing patterns. Single units 
were divided into backbone and nonrigid groups based on the recruit-
ment within bursts, after the approach used in organoids (Fig. 6b, 
Supplementary Fig. 1 and Extended Data Fig. 7). Averaging each unit’s 
firing relative to burst peaks revealed sequential activity among back-
bone units consistently recruited during bursts (Fig. 6c). Analysis 
of spike times confirmed preserved temporal offsets between unit 
peaks with consistent shifts between their peak FRs (Fig. 6d). As in 
organoids, backbone units formed a strongly correlated core com-
pared to nonrigid units (Fig. 6e–g and Supplementary Figs. 9 and 
12), with that activity generating temporal sequences that spanned 
~102 ms timescales. Together, these results demonstrate that slices of 
the developing murine somatosensory cortex generate both rigid and 
flexible firing patterns that establish sequential activation patterns 
commonly observed in mature cortical circuits across a range of spe-
cies and brain regions7.

Comparing sequences across neurodevelopmental models
To understand the role of three dimensionalities in neurodevelop-
ment, we compared neuronal firing patterns generated by 2D murine 
primary cortical cultures to those observed in human and murine 
brain organoids and acute murine neonatal slices. All four systems 
displayed population bursts with consistent firing units recruited 
during burst epochs (Supplementary Fig. 1). Backbone neurons had 
significantly higher FRs than nonrigid counterparts (Fig. 7a, P < 10−6, 
linear mixed-effects model, and Supplementary Fig. 23). However, 
primary cultures exhibited overall higher FRs across both popula-
tions (P < 10−10 for human organoids and neonatal slices). In contrast, 
backbone units in organoids and neonatal slices showed significantly 
stronger normalized burst-to-burst single-unit firing correlations com-
pared to primary cultures (Fig. 7b and Supplementary Fig. 9). After 
normalization relative to randomized data, backbone units remained 
significantly more correlated than nonrigid units in organoids and 
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slices (P < 10−10 and P = 7 × 10−4, linear mixed-effects model), whereas 
no significant difference was observed in primary cultures (P = 0.06). 
Despite variability between batches, these differences were consistent 
across human and murine organoids, across whole and sliced prepara-
tions measured in different laboratories (Extended Data Figs. 2 and 8 
and Supplementary Fig. 9).

Pairwise cross-correlations further underscored the differ-
ences between single-unit FRs among backbone and nonrigid units 
(Fig. 7c and Supplementary Fig. 12). Backbone-to-backbone pairs in 
organoids and slices exhibited significantly higher correlations com-
pared to randomized controls (P < 10−10, linear mixed-effects model), 
an effect not observed in primary cultures (P > 0.99). These differ-
ences were observed in organoids across developmental time points 
(Supplementary Fig. 2b–d), across different cell lines and human 

organoid protocols and laboratories22,27 (Extended Data Fig. 2f), and in 
murine forebrain organoids (Supplementary Figs. 5 and 12). In contrast, 
2D primary cultures exhibited synchronous, burst-centered activity that 
lacked sequential structure (Extended Data Fig. 6c), identical to rand-
omized organoid data (Extended Data Fig. 5c). Consequently, human 
and murine organoids showed significantly larger cross-correlation lag 
times among backbone pairs compared to primary cultures (Fig. 7d; 
P < 10−7 and P = 0.011), highlighting their ability to sustain correlated 
activity on ~102 ms timescales typical of cortical and subcortical circuits 
with the capacity to support sequential firing patterns7,30,34,36.

We then applied PCA to quantify variance explained by backbone 
and nonrigid units. In organoids, backbone units explained a signifi-
cantly larger fraction of variance than other model types (Fig. 7e and 
Supplementary Fig. 15; P < 0.001, linear mixed-effects model). These 
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findings highlight that organoids generate sequential patterns residing 
in a lower-dimensional subspace (explained by fewer PCs) embedded 
within a higher-dimensional background of irregular activity. Neonatal 
slices also contained backbone units capable of generating sequences 
that span ~102 ms timescales, but with less stereotypy than organoids. 
By contrast, recurring sequential activation was not sustained in 2D 
primary cultures.

We then asked if our analysis using HMMs would provide further 
insight. Across models, nonrigid units were predominantly Poisson, 
while backbone units were non-Poisson (Supplementary Fig. 24). In 
the in vivo cortex, Poisson randomness is not universal31, where archi-
tectonically defined regions generate homologous firing patterns that 
differ systematically across brain regions but remain conserved across 
species41. To compare complexity across models, we defined dimen-
sionality as the number of PCs required to explain a fraction θ of HMM 
variance. With θ = 0.75, human organoids were separable from slice 
data (P = 0.04, linear mixed-effects model with Poisson observations), 
while primary cultures had significantly lower dimensionality than both 
human (P < 0.0001) and murine organoids (P = 0.003; Fig. 7f), with 
similar trends existing for a range of values of θ (Supplementary Fig. 25). 
Within organoids, hidden states captured multidimensional clusters of 
activity, whereas randomization collapsed them to a one-dimensional 
space that scales with the population rate (Supplementary Fig. 22). 
Although the number of realized states was relatively insensitive to 
the number of hidden states (Supplementary Fig. 20), traversal rates 
differed—3D models exhibited lower rates than 2D primary cultures 
(Supplementary Fig. 26).

Firing pattern stability
Despite similarities in firing patterns and stable sequences observed 
in organoids and neonatal slices, 2D counterparts are dominated 
by Poisson-like irregularity, which precludes the generation of sus-
tained temporal patterns and confines state transitions, as defined 
by HMM, to a lower-dimensional space (Fig. 7f). However, all models 
are capable of generating complex firing patterns with structured 
population dynamics across multiple timescales. Across phylogeny, 
brains and other complex systems exhibit signs of criticality42. Criti-
cality is a dynamical state of multiscale, marginally stable dynamics 
that simultaneously optimizes information transmission, storage, 
dynamic range, susceptibility and robustness. Criticality is widely con-
sidered a homeostatic endpoint in the brain32, that is, in the intact brain, 
maintained by sleep43. While measurements of criticality traditionally 
require extended sampling of a system’s activity, recent progress solves 
this problem by applying renormalization group theory33. We used 
this framework to quantify how close neural dynamics are to tempo-
ral scale-invariance. At criticality, temporal correlations span many 
timescales without a characteristic scale, captured by the distance 
metric d2. Values between 0.0 and 0.1 indicate near-critical dynamics 
that span many timescales without a characteristic scale, while larger 
values reflect deviation. A subset of all preparations produced activ-
ity consistent with autoregressive models and exhibited near-critical 
dynamics (Supplementary Fig. 27). Spike-time shuffling consistently 
abolished temporal criticality across preparations, producing sig-
nificantly larger d2 values (P < 10−10 compared to intact data, two-sided 
Welch t test). Murine organoids showed particularly strong agreement 
between empirical data and model predictions. This indicates that the 
capacity for scale-invariant dynamics may be a fundamental property 
of neural circuits that emerges during development, independent of 
precise circuit architecture or environmental context.

Discussion
Neuronal sequences are believed to form the basis for information 
broadcasting and computation in the brain4,6,8–11. Whether such 
sequences are emergent features of early brain development, a stage 
dominated by spontaneous activity with the potential to encode 

information, remains unclear34. We report that temporally structured 
neuronal sequences emerge in human and murine brain organoids 
that assemble in the absence of sensory experience. We identify a 
subpopulation of temporally rigid, sequence-generating ‘backbone’ 
neurons that reside in a low-dimensional subspace. In contrast, we 
found a larger population with more irregular activity, residing in 
higher-dimensional space. Sequence-generating backbone neurons 
were also observed in neonatal murine cortical slices that developed 
under minimal sensory input, but were absent in 2D murine cortical cul-
tures where intrinsic anatomical organization is disrupted. Our results 
support the hypothesis that neuronal sequences are ‘preconfigured’ 
as an innate 3D architecture established during neurodevelopment, 
arising independent of experience.

To address the open questions above, we leveraged state-of-the-art 
high-density extracellular recordings from 3D-stem cell-derived mod-
els of the human and murine brain, known as brain organoids, which 
represent an intrinsically self-organized neuronal system that recapitu-
lates key facets of early brain development17–20 and the establishment 
of functional circuits21,22,26. Our results demonstrate that temporally 
rigid sequences represent a subpopulation that projects back onto a 
minority of strong functional connections with a lognormal distribu-
tion (Fig. 3). In a seminal paper, it has been demonstrated that emergent 
computational properties from simple properties of many cells, rather 
than complex circuits, are capable of generalization and time sequence 
retention44. Therefore, it’s not surprising that the temporal structure 
of spontaneous and evoked patterns of cortical circuits is similar45,46, 
because such representations are drawn from a functionally connected 
neuronal pool with right-skewed, lognormal scaling rules2.

Units that fire within neuronal sequences exhibit varying tem-
poral precision. Neurons firing at the beginning of population bursts 
are most constrained, whereas later-firing units are more flexible 
(Fig. 2f,g). An analogous organization is present in rat somatosen-
sory and auditory cortex4 and the three-layered turtle cortex5. In the 
hippocampus, experience-dependent replay emerges from spon-
taneous, experience-independent preconfigured sequences11. The 
balance between temporally correlated and irregular spiking popula-
tions is essential for information processing. For example, large-scale 
recordings from mouse visual cortex and monkey brain reveal a 
low-dimensional subspace of neurons entrained to population dynam-
ics, insensitive to external stimuli38. Similarly, in organoids we observe 
a backbone subspace embedded within higher-dimensional irregular 
activity (Fig. 4). Stochastic firing in randomized organoid data closely 
mirrors 2D dissociated cortical cultures, which show culture-wide syn-
chronization that cannot sustain sequential patterns (Extended Data 
Figs. 5 and 6), likely reflecting highly redundant 2D network configu-
rations. These findings highlight that neurogenesis and synaptogen-
esis in organoids generate structured networks rather than random 
assemblies. Our results support the hypothesis that construction of 
complex networks capable of recapitulating in vivo neural dynamics 
requires morphogenesis in three dimensions. Indeed, recent work has 
demonstrated that human brain organoid circuits, when combined 
with a machine interface, can act as reservoirs for computing, including 
speech recognition and nonlinear equation prediction47.

In vivo, a minority pool of strongly correlated neurons has been 
proposed to form a fast-acting system embedded within a more weakly 
coupled background, functioning as a preconfigured brain state3. 
The balance between rigid and flexible spiking and the emergence of 
sequential patterns are features of 3D cytoarchitecture, supported 
by our analysis of spontaneous activity in the neonatal murine soma-
tosensory cortex (Fig. 6). A neurophysiological backbone is likely 
organized during neurogenesis, as pyramidal progenitors establish 
high-firing subnetworks that remain functionally connected across 
brain states16. In human and murine organoids, highly correlated back-
bone units increase in burst-to-burst correlation over development 
(Supplementary Fig. 2). This transition coincides with the incorporation 
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of inhibitory interneurons22,48 and reflects an excitatory–inhibitory 
balance shifting toward inhibition observed in vivo37, while preserv-
ing right-skewed functional rules49. Temporal rigidity of sequences is 
strongly modulated by GABAergic inhibition (Extended Data Fig. 4), 
where blockade induces heightened burst synchronization, consist-
ent with GABA’s inhibitory role. These results underscore interneuron 
signaling as critical for network homeostasis and for shaping early 
dynamics before sensory input37. Although GABA was once thought 
to be excitatory during the early development50, growing evidence 
indicates inhibitory effects occur much earlier37,51,52. Our findings align 
with this perspective, highlighting interneurons as key contributors to 
the temporal structure of early neuronal sequences. Brain organoids 
thus provide a powerful platform to study how specific cell types and 
regional interactions assemble functional microcircuits53,54.

Brain organoids represent a self-organized neurodevelopmen-
tal system that operates as a closed system devoid of external input, 
yet capable of generating activity patterns resembling early brain 
dynamics. Within these firing patterns, we observed overlap between 
non-Poisson-like activity in organoids and neonatal slices. By con-
trast, primary cortical cultures with randomized cytoarchitecture 
showed lower-dimensional state transitions in an HMM (Fig. 7f). In vivo, 
brain regions balance firing patterns ranging from irregular Poisson to 
clock-like regularity, depending on local architectures, and these are 
thought to be critical for higher-order function31. In fact, a minority 
‘backbone’ of consistently firing neurons can predict motor control with 
high accuracy in humans55 and has been proposed as an ‘ansatz’, or initial 
estimate for aligning behavior to environmental input3. We posit that 
highly correlated, non-Poisson components may provide the basis for 
temporal sequence emergence in development. Early sequences may 
function as an internal reference for larger-scale dynamics in mature 
circuits7, later calibrated by sensory–motor interactions34. Indeed, in 
postnatal murine brain, preconfigured motifs arise spontaneously in 
rest and are not improved by sequential experience during the third 
week11. We further show that firing in organoids and neonatal slices gen-
erates strong nonrandom correlations with temporal jitter and nonzero 
phase lags. These ensembles form manifolds of trajectories identifiable 
by an HMM, with a core of strongly interacting units (Fig. 5c,d). Such 
subsets may act as ‘irreversible’ noisy logic elements that establish a 
local arrow of time, similar to recent findings in retinal circuits, neuronal 
activity remains irreversible even when their inputs are not39.

In summary, our analysis of spontaneous activity, generated 
by stem cell-derived human and murine brain organoids, demon-
strates that structured spiking sequences can emerge without sen-
sory experience and motor output, supporting the preconfigured 
brain hypothesis. These results are in line with recent work showing 
how pharmacologically abolishing all central nervous system activity 
during the development of the larval zebrafish did not alter an oculo-
motor behavior56, suggesting that complex sensory–motor systems 
are hard-wired by activity-independent mechanisms. Our findings 
recall the philosophy discussed in ref. 57, which posited an a priori 
construction of a space-time map that, in modern terms, could serve 
as a ‘scaffold’ to enable the brain to interact with and make sense of the 
world. In conclusion, brain organoids provide a heuristic platform for 
exploring how exogenous inputs refine self-organized neuronal circuits 
imbued with the innate capacity to process information and compute47, 
while also facilitating new studies into the genetic mechanisms gov-
erning the assembly of functional circuitry during early human brain 
development58–62.
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Methods
Human brain organoid slice recordings and preprocessing
The human brain organoids extracellular field recordings presented in 
Figs. 1–4 were sourced from ref. 22. Organoids with less than 20 active 
units were not considered significant to reliably separate a backbone 
and nonrigid population. Briefly, brain organoids were grown based on 
the methods developed in ref. 18 and were of predominant forebrain 
identity based on the single-cell RNA sequencing analysis22. The record-
ings were made using CMOS MEA technology (MaxOne, MaxWell Bio-
systems) using MaxLab Live (version 19.2.19). The electrode selection 
was done based on the automatic activity scans (tiled blocks of 1,020 
electrodes) to identify the spatial distribution of electrical activity 
across the surface of the organoid. The 1,020 most active electrodes 
were chosen with a minimal spacing distance of at least two electrodes 
(2 × 17.5 µm), providing sufficient electrode redundancy per neuron to 
enable accurate identification of single units by spike sorting63, while 
simultaneously sampling network activity across the whole organoid 
surface interfacing the MEA. Measurements were made in a culture 
incubator (5% CO2 at 37 °C) with a sampling rate of 20 kHz for all record-
ings, and the data were saved in HDF5 file format. The raw extracellular 
recordings were band-pass filtered between 300 and 6,000 Hz and 
subsequently spike sorted using the Kilosort2 algorithm64 through 
a custom Python pipeline. The spike sorting output was then further 
curated by removing units with an ISI violation threshold65 above 0.3, 
an average FR below 0.05 Hz and/or a signal-to-noise ratio below 5.

Whole human brain organoid recordings
Additional electrophysiology data from whole human brain orga-
noids (Fig. 7) were sourced from ref. 27 that made use of high-density 
MEAs integrated into a six-well configuration (MaxTwo, MaxWell Bio-
systems). Whole organoids were attached to MEAs at 9.5 weeks old 
and grown for 32 days. Recordings were performed using the same 
methods in the previous section using MaxLab Live (version 22.2.6). 
The organoids were grown from human iPSCs (NIBSC8 iPSC line) and 
cultured in mTESR Plus medium on vitronectin and differentiated 
into organoids based on a previously established protocol66. Neural 
differentiation was induced with Neural Induction medium through 
SMAD inhibition (Gibco) and organoids were differentiated under 
gyratory shaking (88 rpm, 50-mm orbit) for up to 8 weeks in Neuroba-
sal Plus medium supplemented with 1× B27-Plus, 10 ng ml−1 human 
recombinant GDNF (GeminiBio), 10 ng ml−1 human recombinant BDNF 
(GeminiBio), 1% penicillin–streptomycin–glutamine (Gibco, Thermo 
Fisher Scientific). Half changes of medium were performed thrice a 
week. See Supplementary Methods for additional details regarding 
ESC maintenance, organoid generation, single-cell RNA sequencing 
and immunohistochemistry characterization.

Murine ESC-derived cortical organoids
Organoids were generated from the following three distinct mouse 
ESC lines: C57BL/6, E14TG2a (129/Ola) and KH2 (129/SvJ x C57BL/6 
hybrid). ESCs were dissociated into single cells using TrypLE Express 
Enzyme (Thermo Fisher Scientific, 12604021) for 5 min at 37 °C. After 
dissociation, the cells were re-aggregated in lipidure-coated 96-well 
V-bottom plates at a density of 3,000 cells per well in 150 µl of mESC 
maintenance medium, supplemented with 10 µM Rho Kinase Inhibi-
tor (Y-27632; Tocris, 1254) and 1,000 units ml−1 Recombinant Mouse 
Leukemia Inhibitory Factor (MilliporeSigma, ESG1107). After 24 h of 
re-aggregation, the medium was replaced with cortical differentiation 
medium (Supplementary Methods).

Daily medium changes were performed, with N-2 and B-27 sup-
plements added postfiltration to preserve their hydrophobic com-
ponents. On day 5, organoids were transferred to ultralow adhesion 
plates (MilliporeSigma, CLS3471), where the medium was replaced 
with fresh neuronal differentiation medium. The plates were then 
placed on an orbital shaker set to 68 rpm to prevent organoid fusion. To 

ensure optimal growth conditions, 16 organoids per well were consist-
ently maintained. Organoids were plated whole at an age of around 30 
days and recordings started when consistent population bursts were 
observed, in a similar manner as the human brain organoid slices as 
described previously. Recordings were performed using MaxLab Live 
(version 25.1.6; MaxWell Biosystems).

Neonatal murine brain-slice preparation
All experiments involving murine neonatal acute slice recordings were 
approved by the Basel-Stadt veterinary office according to Swiss federal 
laws on animal welfare. Animal housing was equipped with an artificial 
light source providing a daylight-like spectrum. The light phase of 
the dark/light cycle lasted from 6:30 a.m. to 6:30 p.m., with a 30-min 
twilight period during both dark-to-light and light-to-dark transitions. 
Ambient temperature was maintained at 20–24 °C, and relative humid-
ity at 45–65%. Briefly, mouse pups (P12–P14; both sexes; C57BL/6JRj 
from Janvier Labs) were decapitated under isoflurane anesthesia, 
followed by brain dissection in ice-cold artificial CSF (aCSF) bubbled 
with carbogen gas (95% O2, 5% CO2). To promote self-sustained cortical 
activity67, the following aCSF recipe was used: 126 mM NaCl, 3.5 mM KCl, 
1.25 mM NaH2PO4, 1 mM MgSO4, 2 mM CaCl2, 26 mM NaHCO3 and 10 mM 
glucose, at approximately pH 7.3 when bubbled with carbogen. Coro-
nal brain slices (370 μm) were prepared using a vibratome (VT1200S, 
Leica). Slices were subsequently transferred to a chamber submerged 
in carbogenated aCSF and stored at room temperature until use.

Acute recordings from neonatal murine brain slices
For recordings, a brain slice containing somatosensory cortex was 
transferred from the storage chamber onto the sensing area of the 
CMOS MEA and fixated with a customized MaxOne Tissue Holder (Max-
Well Biosystems). The slice was perfused with heated aCSF (32–34 °C). 
Recordings were performed using MaxLab Live (version 22.2.8; Max-
Well Biosystems). Sparse, rectangular electrode configurations were 
selected to find active regions of the somatosensory cortex, with a 
sparsity of two or three to allow for a good spike-sorting performance.

Primary planar culture preparation
The presented primary neuronal recordings (Pr) were sourced from ref. 
28 for Pr1–Pr4 and from ref. 29 for Pr5–Pr8. Briefly, neuronal cultures 
were prepared from embryonic day 18 Wistar rat cortices and plated at 
a density of 3,000 cells per mm2 onto high-density CMOS MEAs (Max-
One, MaxWell Biosystems) and maintained in a cell culture incubator 
(5% CO2 at 37 °C)28. The recordings were made at 20 days in vitro. The 
recordings can be obtained from https://www.research-collection. 
ethz.ch/handle/20.500.11850/431730.

Comparing data from different sources
No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous 
publications22,27–29,67. The recording durations of all recordings coming 
from the same source were kept consistent. The recording durations 
per data source were selected so that each recording contained around 
40 bursts (38 ± 4 bursts, mean ± s.e.), using the first x minutes of the 
recording to get to this value.

Data distributions were assumed to be normal, but this was not 
formally tested. Where distributions visually deviated from a normal 
distribution, a log transformation was performed or the distribution was 
modeled with a generalized linear model. Where data distributions con-
tained a number of samples that were too large to be plotted individu-
ally, violin plots were used to report the shape of the distribution. Data 
analyses were performed blindly to the conditions of the experiments.

Single-unit FR and CV2 calculations scores
All of the following analyses were performed using custom MATLAB 
scripts. MATLAB (version R2018b) was used. The FR of each individual 
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spike-sorted unit with at least 30 detected spikes in the recording was 
computed by obtaining the interspike interval between each spike 
event and applying a Gaussian smoothing with a 50-ms kernel to its 
inverse. A lognormal distribution was fitted to the distribution of FRs 
averaged over the whole recording period for each unit. The goodness 
of the fit was assessed using the R2 metric. In addition, for the same 
selection of units, the CV2 score of the spiking activity was computed 
per unit as described in ref. 68 as a measure of spiking variability. The 
same CV2 computations were performed on 100 different shuffled 
spike matrices and the results from the original spike matrices were 
z-score normalized using the mean and s.d. over all shuffled datasets.

Population rate calculations
The population FR was computed by summing spikes over all units of 
each frame, followed by smoothing with a 20-ms sliding square window 
and a subsequent 100-ms sliding Gaussian kernel. For the detection of 
the burst start, end and peak, population activity bursts were defined 
when the population-averaged spike rate exceeded 4× its root mean 
square (r.m.s.) value (using the built-in MATLAB function findpeaks 
with min_dist = 700 ms. For recordings with long-duration bursts, 
min_dist was increased up to 2,000 ms to prevent peaks in the tail of 
the burst from being detected as separate burst instances). The burst 
start and end times were determined as the first time points where the 
multi-unit activity fell below 10% of the detected peak value, occurring 
before and after the burst peaks, respectively. The actual burst peak 
time was then obtained by recomputing the population FR using a 5-ms 
square window and a 5-ms Gaussian kernel and finding the frame with 
the highest value between the burst start and end time. For murine 
primary planar cultures, a 20-ms square window, a 50-ms Gaussian 
kernel and a 3× r.m.s. threshold were used for population peak detec-
tion and a 20% threshold for the burst start and end time detection. 
These values were chosen to account for stronger jitteriness of the 
population activity and more abundant interburst activity.

FR sequences and burst backbones
For each individual unit, the FR centered by the burst peak was aver-
aged from −250 ms to 500 ms relative to the burst peak. In addition, the 
time relative to the population burst peak, when this unit experienced 
a peak in its FR within the burst start and end window, was selected. 
The median and variance of the FR peak times were computed per unit 
over all bursts in which this unit fired at least two action potentials. The 
median values were used for reordering the units for different plotting 
purposes and the variance was used to fit a linear mixed-effects model 
to study the relationship between the effect of the relative position of 
the peak (from 0 to 1) on the variance of the peak.

Units that fired at least two action potentials in all the bursts in 
a recording were defined as backbone units. For murine organoids 
and cortical slices, a threshold of 80% and 90% of bursts was used, 
respectively, because only a small fraction of units had at least two 
action potentials in all bursts (Supplementary Fig. 2a). A backbone unit 
sequence was defined by ordering all backbone units based on their 
median FR peak time. For each sample, the burst backbone period was 
defined as the average FR peak time of the earliest backbone unit until 
the average FR peak time of the latest backbone unit in the sequence. 
For different plotting purposes, the backbone period was rescaled 
from 0 to 1 and data per organoid were overlaid and averaged over the 
rescaled backbone period for comparison.

Burst-to-burst FR correlations
For each unit, the FR was recomputed after removing all spikes that fell 
outside of the burst windows. Next, this FR was selected from −250 ms 
to 500 ms relative to each individual burst peak and a cross-correlation 
was computed for the unit FR between each pair of bursts for each 
individual unit (using the built-in MATLAB function ‘xcorr’ with max-
lag = 10 ms and normalization = ‘coeff’). Only bursts with at least two 

detected action potentials and units with at least two spikes in at least 
30% of all bursts were considered for this analysis. Afterwards, the aver-
age over the maximum correlations for all the burst pairs with at least 
two detected action potentials was computed per unit, yielding the 
burst-to-burst correlation. The same computations were performed on 
100 different shuffled spike matrices and the results from the original 
spike matrices were normalized using the (A − B)/(A + B) strategy, where 
A is the measured value and B is the averaged value computed over the 
100 shuffled datasets.

In a separate analysis, burst-to-burst correlations were computed 
between bursts from two recordings from the same organoid slice at 
4-h intervals. Average burst-to-burst correlations were computed for 
pairs of bursts within each of the two same recordings, as well as for 
pairs of bursts where one burst came from the recording at 0 h and the 
other burst from the recording at 4 h.

Pairwise FR correlations
Using the same FR computed after removing spikes outside burst 
windows, cross-correlations were computed between each pair of units 
(using the built-in MATLAB function ‘xcorr’ with maxlag = 350 ms and 
normalization = ‘coeff’, a maxlag of 350 ms was chosen because the 
median backbone period over all samples except the murine primary 
cultures was 348 ms). The rate for the whole recording was used. The 
maximum correlation values for each unit pair were compared between 
pairs of backbone units, pairs of one backbone and one nonrigid unit 
and pairs of nonrigid units. The same computations were performed 
on 100 different shuffled spike matrices and the results from the origi-
nal spike matrices were normalized using the (A − B)/(A + B) strategy, 
where A is the measured value and B is the averaged value computed 
over the 100 shuffled datasets. In addition, for all pairs of backbone 
units, the lag time corresponding to the maximum correlation value 
was compared to the average absolute lag time over all shuffled datasets 
for the same unit pair.

Burst similarity score
At every frame relative to the burst peak, a vector containing the FRs for 
each unit was obtained. For every pair of bursts, the cosine similarity 
was computed between the vectors from the two different bursts. This 
yielded a matrix with pairwise burst similarity values at every frame 
relative to the burst peak. The average of this matrix was defined to 
be the burst similarity score for that relative frame. This score was 
computed for each frame from the earliest burst start time (relative 
to the burst peak across all bursts) to the latest burst end time (also 
relative to the burst peak across all bursts). The same computations 
were performed on the spike matrices after shuffling.

Besides computing the burst similarity score over all units, burst 
similarity scores were also computed for only a subset of units. In the 
first case, these subsets consisted of all backbone units and all nonrigid 
units, respectively. Subsequently, at each frame, the burst similarity 
score distribution for all burst pairs was compared using a paired sam-
ple, two-sided t test (using the built-in MATLAB function t test). In the 
second case, these subsets consisted of units with an average correla-
tion value (‘Pairwise FR correlations’) in the top/bottom ith percentile, 
where i ranged from 20 to 95. Subsequently, the difference between the 
top and bottom ith percentile was quantified for this range as the sum 
of the burst similarity score over all frames in the backbone period. 
This was done to assess the burst similarity based only on highly/lowly 
correlated units. Similarly, the burst similarity score distribution for all 
burst pairs was compared between the top/bottom 20% of units and 
all units using a paired sample, two-sided t test.

PCA manifold analysis
The spike-rate matrix of an organoid with n units can be interpreted 
as a set of points in n dimensional space, where each axis holds the 
spike-rate trajectory of a specific unit. The PCs of this system are 
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the directions in this space that capture the majority of the dataset’s 
variance. A dimensionality reduction is achieved by linearly project-
ing the dataset onto these PCs. This transformation collapses the n 
dimensional system to p dimensions where p < n, while preserving 
the dominant patterns exhibited by the system. For this analysis, PCs 
were computed via Eigen-decomposition of the covariance matrix, as 
discussed further below.

Before the dimensionality reduction step, the FR data were normal-
ized for each unit individually using the z-score method, which centers 
the data around zero mean and unit s.d. The dimensionality reduction 
was performed on the following three separate selections of units: all 
units, backbone units only and nonrigid units only.

The cumulative sum of the variance explained per PC was com-
puted for the PCs ordered from high variance to low. For each record-
ing, the results for all units were subtracted from the results for 
backbone units only and nonrigid units only. Negative values mean 
that the cumulative sum of the variance explained by all units is larger 
than for the subset of units and positive values mean that the cumula-
tive sum of the variance explained by all units is smaller.

Furthermore, the sum of the variance explained by the first three 
PCs was computed and divided by the summed explained variance 
of the first X PCs, where X is the lowest number of total PCs from the 
three selections—all units, backbone and nonrigid. This was done to 
account for differences in the total number of PCs per selection. This 
value was computed for the original data and for 100 different shuffled 
spike matrices and the results from the original spike matrices were 
normalized using the (A − B)/(A + B) strategy, where A is the measured 
value and B is the averaged value computed over the 100 shuffled data-
sets. These scores were compared between the three selections and 
between the different model types as described in ‘Statistical analyses 
for model comparisons’.

Randomized recording
Randomization of single-unit spike times was performed based on the 
methods discussed in refs. 38,69 to preserve each neuron’s mean FR 
as well as the population-averaged FR distribution. This is necessary 
to avoid trivial differences that would arise simply by changes in the 
mean FR of a neuron. Briefly, whenever analyses were performed on a 
randomized recording, the randomization was done as follows (unless 
stated otherwise): two separate units, A and B, were selected and two 
separate frames, 1 and 2, were selected where A but not B fired in frame 
1 and B but not A fired in frame 2. Next, the spikes from unit A to unit B 
were switched between frames 1 and 2. The resulting spike matrix still 
has an equal number of spikes per unit (same average FR) and an equal 
number of spikes per frame (same population rate). This shuffling pro-
cedure was performed five times more often than there were spikes in 
the spike matrix, resulting in each spike being shuffled an average of 
ten times. This method was applied to produce 100 different shuffled 
spike matrices per original recording.

Statistical analyses for model comparisons
Statistical modeling was carried out in the R environment (version 
4.2.1). Nested data were analyzed with linear mixed-effects models 
(‘lmer’ function of the lme4 R package70) with ‘organoid’ or ‘unit ID’ as 
random effect. Non-nested data were analyzed with linear models (‘lm’ 
function). Right-skewed and heavy-tailed data were log-transformed 
and analyzed with a linear model. Statistical significance for linear 
mixed-effects models was computed with the lmerTest R package71 
and the summary (type III sums of squares) R function. Statistical 
significance for linear models was computed with the summary R 
function. When possible, model selection was performed accord-
ing to the experimental design. When this was not possible, models 
were compared using the ‘compare_performance’ function of the 
performance R package72, and model choice was based on a holistic 
comparison of AIC, BIC, RMSE and R2. Model output was plotted with 

the ‘plot_model’ (type=’pred’) function of the sjPlot R package73. A 
total of 95% confidence intervals were computed using the ‘confint’ 
R function. Post hoc analysis was carried out using the ‘emmeans’ and 
‘emtrends’ functions of the ‘emmeans’ R package.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the 
article and its supplementary information. Raw and curated electro-
physiology recordings can be found here https://dandiarchive.org/ 
dandiset/001603. scRNA-seq data have been deposited and are publicly 
available in the NCBI Gene Expression Omnibus (http://www.ncbi.nlm. 
nih.gov/geo) with accession GSE290330.

Code availability
Spike sorting was performed in Python 3.6 using SpikeInterface 
0.13.0 and previously published63, which can be found at https:// 
github.com/SpikeInterface/spikeinterface. Custom code for electro-
physiology analysis is available at https://github.com/braingeneers/ 
Protosequences
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Extended Data Fig. 1 | Backbone units occupy the tail of skewed firing rate 
distributions. a, A histogram of the distribution of average firing rates for all 
units in organoid 1. The majority of units have low average firing rates, while a 
long tail in the distribution contains a small subset of units with high average 
firing rates. A lognormal distribution is fitted to the histogram. The inset shows 
the histogram for the logarithm of the average firing rates of the same organoid. 
A normal distribution is fitted to the histogram. b, Normal distributions fit to 
the logarithm of the average firing rate per unit for the 8 different organoids. 

c, The R2 values for the fitted normal distributions shown in b. R2 = 0.97 ± 0.04 
(mean ± s.d.) across the 8 human brain organoids. Backbone neurons alone 
are not well described by a lognormal distribution. R2 values are 0.45 ± 0.30 
across the 8 human brain organoids. d, The distribution of average firing rates 
per organoid for backbone and non-rigid units separated. Red bars mark the 
distribution medians. The backbone units populate the tail of the skewed average 
firing rate distributions in all organoids. See Fig. 7a for statistical comparisons.
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Extended Data Fig. 2 | Reproducible firing patterns in human brain organoids. 
a, Raster plot visualization of single-unit spiking (blue dots) measured across 
the surface of a human brain organoid slice from ref. 27 (HO5), positioned on top 
of the same Maxwell Biosystems microelectrode array as used for the organoid 
recordings included in the main Figs. 1–5. The population firing rate is shown 
by the red solid line. Population bursts are marked by sharp increases in the 
population rate. Burst peak events are denoted by local maxima (black dots)  
that exceed 4× r.m.s. fluctuations in the population rate. The shaded gray  
regions denote the burst duration window as defined by the time interval in 
which the population rate remains above 10% of its peak value in the burst.  
b, The instantaneous firing rate of single-unit activity from a after reordering. 
The backbone units are plotted above the dashed line, while non-rigid units are 
plotted below the dashed line. In each category, units are ordered based on their 
median firing rate peak time relative to the burst peak, considered over all bursts 
in the recording. c, The average burst peak-centered firing rate measured across 
all burst events for the example recording of which part is shown in a. The burst 
peak is indicated by the dotted line. The unit order is the same as b. Please note 
the progressive increase in the firing rate peak time relative to the burst peak, 
as well as a spread in the active duration for units having their peak activity later 
in the burst. The average firing rate is normalized per unit to aid in visual clarity. 

d, The distributions of the log of the average firing rate per unit, separated for 
backbone and non-rigid units. All units from the four recordings mentioned in 
ref. 22 are pooled together and all units from the four recordings mentioned 
in ref. 27 are pooled together (P < 10−20 and P = 0.40, respectively, two-sided 
linear mixed-effect model, n = 4 organoids each). e, The distributions of the 
average burst-to-burst correlations per unit after average rate normalization, 
separated for backbone and non-rigid units. All units from the four recordings 
mentioned in ref. 22 are pooled together and all units from the four recordings 
mentioned in ref. 27 are pooled together. Please note the significant difference 
between backbone and non-rigid units present for both sets of recordings 
(P = 1 × 10−10 and P = 0.0092, respectively, two-sided linear mixed-effect model, 
n = 4 organoids each). f, The distributions of the pairwise correlations per unit 
pair after average rate normalization, separated for backbone pairs, backbone 
and non-rigid combinations and non-rigid pairs. All unit pairs from the four 
recordings mentioned in ref. 22 are pooled together and all unit pairs from the 
four recordings mentioned in ref. 27 are pooled together. Please note that only 
the normalized correlation for backbone pairs are significantly larger than 0 for 
both sets of recordings (P = 0.0001, 0.145 and 1; P = 7 × 10−11, 1 and 1, respectively), 
one-sided linear mixed-effect model, n = 4 organoids each).
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Extended Data Fig. 3 | Burst clustering distinguishes non-rigid from backbone 
unit variability. a, Pairwise firing rate correlations per burst (computed over a 
window ranging from −250 ms until 500 ms relative to the burst peak) projected 
onto the first two principal components, labeled by the identified clusters, show 
a clear separation between different burst clusters. The results, for example, 
recording Or5, are shown. b, The population rate for a snippet of the recording 
for Or5 covering several bursts labeled by their cluster. c, Firing rates per unit for 
8 different example bursts per cluster. d, The average firing rate per unit for the 

different detected burst clusters. e, A selection of non-rigid units is most variable 
in their activity between the different burst clusters as reflected by a higher CV 
score for their firing rate in the different burst clusters (CV scores are computed 
per row for the 4 columns shown in d). f, The CV scores for the firing rate over the 
different burst clusters are significantly higher for non-rigid units compared to 
backbone units (P ≤ 10−20 for difference between backbone and non-rigid, two-
sided linear mixed-effect model).
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Extended Data Fig. 4 | Pharmacological modulation of excitatory and 
inhibitory signaling impacts bursts and sequences. a, Raster plot visualization 
of single-unit spiking (blue dots) measured across the surface of a murine 
organoid (MO10), positioned on top of the same type of microelectrode array as 
used for the recordings included in the main figures. The population firing rate 
is shown by the red solid line. Population bursts are marked by sharp increases in 
the population rate. The shaded gray regions denote the burst duration window 
as defined by the time interval in which the population rate remains above 10% of 
its peak value in the burst. Top: baseline recording. Middle: recording of the same 
organoid using the same electrode configuration, after treatment with 10 μM 
gabazine to inhibit inhibitory signaling by blocking GABAA receptors. Bottom: 
recording of the same organoid slice using the same electrode configuration, 
after blocking AMPA and NMDA receptors with bath application of NBQX (10 µM) 
and R-CPP (20 µM) to inhibit components of excitatory synaptic transmission.  
b, Number of detected population bursts for 5 different murine organoids  
(MO10-14) under baseline conditions, after treatment with gabazine and after 

treatment with NBQX and R-CPP. Please note that bursting disappears after  
NBQX and R-CPP treatment reflected as a significant decrease in bursting 
compared to baseline conditions (P < 0.001, two-sided linear mixed-effect model). 
Meanwhile, the number of bursts increase after gabazine treatment (P < 0.05, 
two-sided linear mixed-effect model). c, Fraction of bursts in which a unit fires 
at least 2 spikes for the 5 different murine organoids under baseline conditions 
compared to the gabazine treatment. The fraction of bursts in which units are 
active increases significantly after gabazine treatment (P < 10−7, two-sided linear 
mixed-effect model). d, Normalized Spearman rank-order correlations comparing 
the sequential order of backbone sequences for all burst pairs of 5 different 
murine organoids (MO10-14) under baseline conditions and after treatment 
with gabazine. Correlation scores are z-scored relative to shuffled spike matrices 
such that values above 0 indicate a more consistent backbone sequence than 
the shuffled data. There is a significant increase in backbone sequence order 
similarity after treatment with gabazine (P < 10−20, two-sided linear mixed- 
effect model).
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Extended Data Fig. 5 | Sequential activations and burst-to-burst similarity 
are not present after shuffling. a, Same raster plot visualization as Fig. 1a after 
shuffling. The population firing rate remains the same after shuffling and is 
shown by the red solid line. Population bursts exist in the same frames after 
shuffling and are denoted by local maxima (black dots) that exceed 4× r.m.s. 
fluctuations in the population rate. The burst duration windows remain the same 
after shuffling and are marked by the shaded gray regions, which denote the 
interval in which the population rate remains above 10% of its peak value in the 
burst. The average firing rate per unit remains the same after shuffling. b, Same 
instantaneous firing rate visualization as Fig. 2b. The same ordering is used as in 
Fig. 2b. c, Same average burst peak-centered firing rate visualization as Fig. 2c  

after shuffling. The burst peak is indicated by the dotted line. The unit order is 
the same as Fig. 2c. Please note that the progressive increase in the firing rate 
peak time relative to the burst peak, as well as a spread in the active duration for 
units having their peak activity later in the burst are not present anymore after 
shuffling. The average firing rate is normalized per unit to aid in visual clarity.  
d, Same burst-peak-centered spike times and pairwise burst-to-burst correlations 
as in Fig. 2d after shuffling. For (i) and (ii), the consistent firing patterns relative to 
the burst peak as exemplified in Fig. 2d are not present anymore and the average 
burst-to-burst correlation scores have decreased from 0.96 to 0.69 and from 0.82 
to 0.53, respectively. Meanwhile, the average burst-to-burst correlation for the 
non-rigid unit exemplified in (iii) decreased from 0.51 to 0.49.
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Extended Data Fig. 6 | Intrinsic activity in murine primary cultures resembles 
organoids after shuffling. a, Raster plot visualization of single-unit spiking (blue 
dots) measured across a 2D murine primary culture from ref. 28 (Pr1) recorded on 
a high-density microelectrode array. The population firing rate is shown by the 
red solid line. Population bursts are marked by sharp increases in the population 
rate. Burst peak events are denoted by local maxima (black dots) that exceed 4× 
r.m.s. fluctuations in the population rate. The shaded gray regions denote the 
burst duration window as defined by the time interval in which the population 
rate remains above 10% of its peak value in the burst. b, The instantaneous firing 
rate of single-unit activity from a after reordering. The backbone units are 
plotted above the dashed line, while non-rigid units are plotted below the dashed 

line. In each category, units are ordered based on their median firing rate peak 
time relative to the burst peak, considered over all bursts in the recording. c, The 
average burst peak-centered firing rate measured across all burst events for the 
example recording of which part is shown in a. The burst peak is indicated by 
the dotted line. The unit order is the same as b. Please note that the progressive 
increase in the firing rate peak time relative to the burst peak, as well as a spread 
in the active duration for units having their peak activity later in the burst are 
not present in the murine primary recording, similar to the organoid data after 
shuffling as shown in Extended Data Fig. 5. The average firing rate is normalized 
per unit to aid in visual clarity.
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Extended Data Fig. 7 | Consistent results in brain slices from different animals. 
a, Raster plot visualization of single-unit spiking (blue dots) measured across 
the surface of a murine neonatal cortical slice from a different animal (M3S1) 
dissected at P13, positioned on top of the same type of microelectrode array  
as used for the recordings included in main Fig. 6. The population firing rate  
is shown by the red solid line. Population bursts are marked by sharp increases  
in the population rate. Burst peak events are denoted by local maxima (black 
dots) that exceed 4× r.m.s. fluctuations in the population rate. The shaded gray 
regions denote the burst duration window as defined by the time interval in 
which the population rate remains above 10% of its peak value in the burst.  

b, The instantaneous firing rate of single-unit activity from a after reordering. 
The backbone units are plotted above the dashed line, while non-rigid units are 
plotted below the dashed line. In each category, units are ordered based on their 
median firing rate peak time relative to the burst peak, considered over all bursts 
in the recording. c, The average burst peak-centered firing rate measured across 
all burst events for the example recording of which part is shown in a. The burst 
peak is indicated by the dotted line. The unit order is the same as b. Please note 
the progressive increase in the firing rate peak time relative to the burst peak, as 
well as a spread in the active duration for units having their peak activity later in 
the burst. The average firing rate is normalized per unit to aid in visual clarity.
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Extended Data Fig. 8 | Backbone sequences observed during spontaneous 
population bursts in murine cortical organoids. a, Raster plot visualization of 
single-unit spiking (blue dots) measured across the surface of a murine organoid 
(MO1) recorded at 42 DIV, positioned on top of the same type of microelectrode 
array as used for the recordings included in the main figures. The population 
firing rate is shown by the red solid line. Population bursts are marked by sharp 
increases in the population rate. Burst peak events are denoted by local maxima 
(black dots) that exceed 4x-r.m.s. fluctuations in the population rate. The shaded 
gray regions denote the burst duration window as defined by the time interval in 
which the population rate remains above 10% of its peak value in the burst.  
b, The instantaneous firing rate of single-unit activity from panel a after 

reordering. The backbone units are plotted above the dashed line, while 
non-rigid units are plotted below the dashed line. In each category, units are 
ordered based on their median firing rate peak time relative to the burst peak, 
considered over all bursts in the recording. c, The average burst peak-centered 
firing rate measured across all burst events for the example recording of which 
part is shown in a. The burst peak is indicated by the dotted line. The unit order 
is the same as b. Please note the progressive increase in the firing rate peak time 
relative to the burst peak, as well as a spread in the active duration for units 
having their peak activity later in the burst. The average firing rate is normalized 
per unit to aid in visual clarity.
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data supporting the findings of this study are available within the article and its supplementary information. Raw and curated electrophysiology recordings can 
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be found here https://dandiarchive.org/dandiset/001603. scRNA-seq data have been deposited and are publicly available in the NCBI Gene Expression Omnibus 

(GEO; http://www.ncbi.nlm.nih.gov/geo) under accession GSE290330.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size for organoid and primary culture recordings were determined by the data available in Sharf et al. and Alam El Din et al. Murine 

organoids were set by the number of available organoids. Acute murine slice recordings were set by the number of available pups.

Data exclusions Due to intrinsic neurophysiological variability occurring during brain organoid development, organoids exhibited a range in the number of 

active spiking units. Organoids with less than 20 units were not considered for recordings in the murine, Sharf et al. and Alam El Din et al. 

data. In order to compare the same number of burst events across all samples the first x minutes of the recordings were used so each 

recording had a similar number of burst events. 

Replication All experiments were performed with sufficient biological replicates across biological models. Additionally, experimental approaches are 

documented with sufficient detail for precise replication.

Randomization Single-unit spike times were randomized to preserve both each neuron’s mean firing rate and the population-averaged firing rate distribution. 

The resulting spike matrix contained an equal number of spikes per unit (same average firing rate) and per frame (same population rate). For 

murine cortical brain slice experiments, neonatal pups of both sexes were selected at random, and slices from the somatosensory cortex were 

chosen randomly prior to acute electrophysiology. Murine cortical organoids were also selected randomly for electrophysiological recordings.

Blinding Human and murine brain organoids and murine cortical slices were grown or prepared in separate laboratories, so sample collection could not 

be blinded. Data analyses were performed blind to the conditions of the experiments.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Primary antibodies used for murine organoids: rabbit anti-Map2 (Proteintech # 17490-1-AP, 1:2000); mouse anti-Pax6 (BD 

Biosciences # 561462, 1:100); rabbit anti-Nkx2.1 (Abcam # ab76013, 1:400); rat anti-Ctip2 (Abcam # ab18465, 1:250); rabbit anti-

Brn2 (Thermofisher # PA530124, 1:400); anti-Gaba (Thermo Fisher Scientific # PA5-32241, 1:375). Secondary antibodies were of the 

Alexa series (Thermo Fisher Scientific), used at a concentration of 1:750. Nuclear counterstain was performed using 1.0 µg/ml 

Hoechst 33342 (Thermofisher # H1399) 

 

Primary antibodies used for human organoids: mouse anti-Gephyrin(Synaptic Systems #147 011, Monoclonal Mouse IgM Clone 

mAb7a ,1:1000); chicken anti-MAP2 (Invitrogen #PA1-10005,1:5000), rabbit anti-GFAP (Dako #Z0334, 1:400); mouse anti-O4 (R&D 

#MAB1326,Monoclonal Mouse IgM Clone # O4, 1:200)

Validation Antibodies used for murine cortical organoids: 

MAP2 (Proteintech 17490-1-AP): Microtubule-associated protein 2 (MAP2) is a tubulin binding protein regulating the spacing and 

stability of microtubules and contributing to elongation of dendrites. MAP2 has multiple isoforms that arise from alternative splicing 

(PMID: 3121794, 7854050, and 10383434). They are classified into two groups - MAP2A and MAP2B, which are known as high 

molecular weight (HMW) isoforms, run as ~280 kDa species, while low molecular weight (LMW) isoforms MAP2C and MAP2D are 

around ~70 kDa. MAP2 proteins are heavily phosphorylated, which contributes to a large discrepancy between their predicted and 

observed molecular weight in SDS-PAGE (220 vs 280 kDa for HMW forms). In neurons, MAP2 proteins are found in the cell body and 

dendrites, where they associate with microtubules, while they can also be present in the nuclei of testicular cells. 

Tested Reactivity: human, mouse, rat 

Host / Isotype: Rabbit / IgG 

Class: Polyclonal 

Calculated Molecular Weight: 200 kDa 

Observed Molecular Weight: 280 kDa, 70-85 kDa 

Purification Method: Antigen affinity purification 

 

Pax-6 (BD Biosciences 561462): Pax-6 is a member of the paired box (pax) gene family whose protein products are transcription 

factors involved in development. Pax family members share a highly conserved DNA binding domain that contains six alpha helices 

(paired domain) and a homeo box domain. Pax-6 has important roles in the development of the eye, nose, central nervous system, 

and pancreas. Tissue culture supernatant is purified by either protein A/G or affinity purification methods. Both methods yield 

antibody in solution that is free of most other soluble proteins, lipids, etc. This format provides pure antibody that is suitable for a 

number of downstream applications including: secondary labeling for flow cytometry or microscopy, ELISA, Western blot, etc. 

Reactivity: Human (QC Testing) 

Isotype: Mouse BALB/c IgG2a, κ 

Clone: O18-1330 

Immunogen: Human Pax-6 aa 406-422 Peptide 

Molecular Weight: 46-48 kDa 

 

Nkz2.1 (abcam ab76013): Nkx2.1 is a transcription factor with a molecular mass of approximately 38 kDa. It plays a significant role in 

regulating gene expression. This target is mainly expressed in tissues such as the thyroid lung and the brain. 

Host species: Rabbit 

Clonality: Monoclonal 

Clone number: EP1584Y 

Isotype: IgG 

Reacts with: Mouse, Rat, Human 

Purification technique: Affinity purification Protein A 

Observed Molecular Weight: 40 kDa 

 

CTIP2 (Abcam ab18465): CTIP2, also known as BCL11B, is a transcription factor crucial in neuro research for its role in neural 

development and differentiation. It is particularly important for the development of medium spiny neurons (MSNs) in the striatum, 

which are essential for motor control and are affected in conditions like Huntington's disease. CTIP2 regulates gene expression 

involved in neuronal differentiation, axon guidance and synaptic connectivity, making it vital for understanding the cellular 

architecture and function of the nervous system. 

Isotype: IgG2a 

Host species: Rat 

Clonality: Monoclonal 

Clone number: 25B6 

Purification technique: Multi-step chromatography 

Specificity: Detects 2 bands representing Ctip2 at about 120kD. Ctip2 is highly expressed in brain and in malignant T-cell lines derived 
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from patients with adult T-cell leukemia/lymphoma 

Predicted band size: 96 kDa  

Observed band size: ~100 kDa 

 

Brn2 (Thermofisher PA530124): This gene encodes a member of the POU-III class of neural transcription factors. The encoded 

protein is involved in neuronal differentiation and enhances the activation of corticotropin-releasing hormone regulated genes. 

Overexpression of this protein is associated with an increase in the proliferation of melanoma cells. 

Species Reactivity:Chimpanzee, Human, Mouse, Non-human primate, Rat 

Host/Isotype: Rabbit / IgG 

Class: Polyclonal 

Immunogen: Recombinant protein encompassing a sequence within the C-terminus region of human Brn2. 

Purification: Antigen affinity chromatography 

 

Gaba (Thermo Fisher Scientific PA5-32241): This chemical acts as a neurotransmitter in the central nervous system. It reduces 

neuronal excitation and regulates muscle tone. 

Species Reactivity: Chemical, Human, Mouse 

Host/Isotype:Rabbit / IgG 

Class: Polyclonal 

Immunogen: GABA. 

Purification: Antigen affinity chromatography 

 

Antibodies used for human brain organoids: 

Gephyrin (Synaptic Systems 147 011): Gephyrin is a scaffolding protein associated with inhibitory neurotransmitter receptors 

Clone: mAb7a 

Subtype: IgG1 (κ light chain) 

Immunogen: Nativ Protein corresponding to AA 1 to 768 from rat Gephyrin  

Epitop: AA 264 to 276 from rat Gephyrin 

Reactivity: human, rat, mouse, pig, goldfish, zebrafish, chicken 

Specificity: Specific for the brain specific 93 kDa splice variant phosphorylated at Ser-270. validated PubMed: 9812897 

 

MAP2 (Invitrogen PA1-10005): MAP2 (Microtubule Associated Protein 2) exists in two high molecular weight forms (MAP2a & 

MAP2b) and a low molecular weight form. The expression of MAP2 is developmentally regulated and its multiple forms arise by 

alternative splicing of a single gene. MAP2 is involved in microtubule assembly, which is an essential step in neurogenesis. The 

products of similar genes in rat and mouse are neuron-specific cytoskeletal proteins that are enriched in dendrites, implicating a role 

in determining and stabilizing dendritic shape during neuron development.  

Species Reactivity: Human, Mouse, Rat 

Published species: Human, Mouse, Pig, Rat 

Host/Isotype: Chicken / IgY 

Class: Polyclonal 

Immunogen: Mix of recombinant human constructs of projection domain sequences, amino acids 235-1588. 

Western blot was performed using Anti-MAP2 Polyclonal Antibody (Product # PA1-10005) and a 160 kDa band corresponding to 

MAP2 was observed across Mouse Brain and Rat Brain and not in Mouse Heart and Mouse Skeletal Muscle. 

Observed Molecular Weight: ~160 kDa 

 

GFAP (Dako Z0334): GFAP (Glial Fibrillary Acidic Protein) is a key marker in neuro research, particularly for its role in identifying 

astrocyte activity. It is predominantly expressed in astrocytes, the most abundant glial cells in the brain and spinal cord. 

Clone: polyclonal 

Immunogen: GFAP isolated from cow spinal cord 

Species: Rabbit Anit- 

Specificity: The antibody has been solid-phase absorbed with human and cow serum proteins. In crossed immunoelectrophoresis 

using 50 µL antibody per cm2 gel area, no reaction with 2 µL human plasma and 2 µL cow serum is observed. The antibody shows 

one distinct precipitate (GFAP) with cow brain extract. Staining: Coomassie Brilliant Blue. In indirect ELISA, the antibody shows no 

reaction with human plasma and cow serum. GFAP shows 90-95% homology between species, and as demonstrated by 

immunohistochemistry, the antibody reacts strongly with human GFAP. 

 

O4 (R&D MAB1326): Oligodendrocyte Marker O4. Oligodendrocytes are myelinating cells in the central nervous system (CNS) and 

form the myelin sheath of axons to support rapid nerve conduction. Oligodendrocyte Marker O4 is an antigen on the surface of 

oligodendrocyte progenitors (1, 2). It has been commonly used as the earliest recognized marker specific for the oligodendroglial 

lineage Species Reactivity: Human/Mouse/Rat/Chicken 

Specificity: Detects human, mouse, rat, and chicken Oligodendrocyte Marker O4. 

Source Monoclonal: Mouse IgM Clone # O4 

Purification: IgM¬specific Affinity¬purified from hybridoma culture supernatant 

Immunogen: Bovine brain corpus callosum white matter 

 

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Three mouse embryonic stem cell lines were used: (1) C57BL/6 genetic background (BRUCE-4 ES Cells; Millipore Sigma); (2) 

E14TG2a (ATCC deposited by T. Doetschman), and (3) KH2 (Jaenisch;  https://doi.org/10.1002/gene.20180). 

Two human iPSC lines used: (1) F12442.4 (Karch; https://doi.org/10.1186/s13195-018-0400-0); (2)NIBSC8 (National Institute 

for Biological Standards and Control, NIBSC, UK).
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Authentication Mouse ESCs were characterized using standard methods, and validated using qPCR and immunohistochemistry to assess 

pluripotency and correct cell type patterning. Additional single cell and bulk RNA sequencing was performed to authenticate 

pluripotency and correct cell type patterning of our organoids. Human iPSC line 1 was analyzed for pluripotency markers and 

chromosomal abnormalities by G-band karyotyping and were confirmed to possess the appropriate genotype by Sanger 

sequencing. Human iPSC line 2 was analyzed for genetic stability every 10 passages using the qPCR-based hPSC Genetic 

Analysis kit (StemCell Technologies™) and authenticated by Short Tandem Repeat profiling. 

Mycoplasma contamination Mycoplasma testing was routinely performed on our ESCs, iPSCs and organoids and all tested negative

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals mouse C57BL/6JRj from Janvier Labs (P12-14; both sexes)

Wild animals n/a

Reporting on sex Neonatal cortical slices were used from both sexes. We do not consider sex as a factor in our analyses, but results apply to all 

animals studied.

Field-collected samples No field collected samples were used in the study

Ethics oversight All experiments involving murine neonatal acute slice recordings were approved by the Basel-Stadt veterinary office according to 

Swiss federal laws on animal welfare. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes n/a

Seed stocks n/a

Authentication n/a

Plants
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